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1. Introduction 

People are becoming increasingly aware that Cultural Heritage 

(CH) must be preserved and promoted, so that it can be better 

appreciated [1, 2]. New information and communication 

technologies have a large potential for helping to reach this goal, 

offering new communication channels to improve the general 

public awareness of the importance of CH. Many countries are rich 

of museums and historical sites, such as archaeological parks, 

whose visitors are primarily middle-school students. There is 

evidence that traditional visits do not fully engage such young 

students, especially in the case of sites whose current appearance 

as ruins no longer reflects their initial appearance and purpose [3]. 

Internet of Things (IoT) is emerging as an effective means to 

connect the physical dimension of museums and exhibitions with 

digital cross-media information, thus resulting in a very promising 

technology able to enhance access to CH collections [4-9]. Thanks 

to the development of ‘smart’ museums, visitors can manipulate 

and interact with smart objects reproducing, for example, 

archaeological artefacts (a cup, a vase, etc.), in order to increase 

their overall experience and appropriation of contents [10-14].  

The availability of interconnected smart objects in a museum 

makes possible to create the so-called Smart Interactive 

Experiences (SIEs – pronounced “see-ehs”), namely usage 

situations created by synchronizing many available smart objects 

to specific situations that might better satisfy the needs of the 

visitors [15]. For example, a SIE could be a game that a 

professional guide creates by properly orchestrating the behavior 

of several smart objects available in a museum to let people 

experience it when visiting the museum.  

In most IoT environments, SIEs are pre-packaged and the 

involved smart objects cannot be easily adapted when either 

exhibits or type of visitors change. Currently, in the CH domain a 

few approaches try to facilitate the configuration of smart objects 

in IoT environments [11]. One big challenge to make IoT have a 

significant practical and social impact is to develop tools and 

techniques to support non-technical people to properly manage a 

great variety of smart devices. In this way, they can create various 

SIEs able to improve the overall experience of final users 

interacting with IoT environments. 

To address this challenge and promote the creation of SIEs that 

enhance people fruition of CH assets, we are working on systems 

that, by implementing different interaction paradigms suitable for 

non-technical people, enable domain experts, like museum 

curators or professional guides, to tailor the behavior of smart 

objects involved in a SIE. To this aim, two iterative phases are 

devised. First, domain experts enrich SIE resources (e.g., smart 

devices) with semantic properties relevant to their domain 

knowledge. For example, referring to the paintings exhibited in a 

museum, semantic properties might be the artist's name, type of 

painting, etc. Second, domain experts express the smart object's 

behavior, i.e., the SIE dynamics, by creating Event-Condition-

Action (ECA) rules based on the semantic properties [14]. For 

example, they can enable specific smart objects to react when they 

are close to artworks containing some properties (e.g., the artwork 

of a specific painter). ECA rule creation is supported by a visual 

interaction paradigm that does not require domain experts to write 

any code in a formal programming language. 

Three prototypes of systems for SIE design have been presented 

in [15]. The prototypes were instrumental for performing a user 

study that compared the different design paradigms used in each 

case, with the aim of identifying their strengths and weaknesses.  
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Within this context, this article proposes and tests the adoption 

of innovative module that 1) recognizes and classifies specific 

elements (smart objects, QR codes, Tangible Attributes, 

handwritten post-it) within a picture, understanding relationships 

among them and grouping them hierarchically through their 

distance and position and 2) recognizes handwritten strings 

containing characters, location and numbers. This module is 

essential for the three system prototypes to be used in real contexts, 

since it facilitates the definition of the smart object semantic 

properties. One of the three prototype systems is considered as 

testbed, and it is shown how the new module supports domain 

experts in both identifying the relevant semantic properties and 

associating them to the specific IoT resources.  

The paper is organized as follows. Section 2 discusses some 

related work. Section 3 illustrates a SIE and how domain experts 

can create it, while Section 4 presents the Tangible system. Section 

5 describes how pattern recognition algorithms are integrated into 

a system supporting non-technical users to define the semantic 

properties of the resources needed to create a SIE. Section 6 

presents the results of an experiment carried out to assess the 

performance of the proposed algorithms. Section 7 discusses these 

results and concludes the paper by focusing on future work. 

2. Related work 

The IoT phenomenon has been largely investigated on the 

technical side [16, 17]. Although some approaches try to facilitate 

the configuration of single smart objects [11], it is still hard for 

non-technical stakeholders to synchronize the behavior of multiple 

physical and virtual resources, installed in the environment or 

embedded in tangible objects, manipulated by the final users.  

There is an increasing interest in addressing this limitation [18]. 

Task Automation Systems (TASs) offer visual paradigms to assist 

non-technical users in defining ECA rules [19]. They are used to 

specify the behavior of a smart object by indicating one or more 

events and one or more conditions that must occur to activate 

specific actions, i.e. operations on data or functions available on a 

smart resource. Some TASs enable people to compose only simple 

rules, such as IFTTT [20], elastic.io [21], Zapier [22], itDuzzit 

[23], WigWag [24]. These tools are far from supporting the 

creation of SIEs, which involve many physical and digital 

resources. Advanced TASs support complex rule definitions, 

addressing more real situations. However, they require specific 

knowledge and programming skills. Examples are Node-RED 

[25], Microsoft Flow [26], Crosser [27]. Recent research proposes 

different paradigms for supporting non-technical people in 

defining more complex ECA rules. The interested reader may refer 

to the special issue on “End-User Development for the Internet of 

Things” [28] (see in particular [29-31]).  

Ontologies are used to build a semantic layer where high-level 

concepts provide an abstract and technology-independent 

representation of the smart objects [32-34]. Thus, users define 

ECA rules by referring to ontology concepts without worrying 

about technical details [32]. For this semantic enrichment, experts 

have to create ontologies and to define the mapping between 

ontological concepts and smart objects. This requires technical 

skills and a significant effort, still exposing the system to the risk 

of not covering the actual needs of SIE designers. In alternative, 

Ardito et al. propose a visual framework that empowers non-

technical SIE designers to build semantic layers for TASs based 

on the definition of custom attributes [14]: they are a means to add 

domain knowledge that can simplify the definition of complex 

ECA rules; in other words, they enable SIE designers to express 

the operational semantics they want to assign to the SIE resources 

depending on the specific usage situation they are interested in. 

The design of SIEs targeted at visitors to CH sites includes 

tangible objects that visitors can bring with them, touch and 

manipulate, and also receive personalized information [11, 13, 35]. 

The interaction with tangible objects activates real-world 

knowledge improving memory [10, 12], and favors emotions, 

engagement, understanding, thus increaseing the appropriation of 

CH content [11]. These motivations are the basis of the prototype 

systems for SIE design presented in [15]. The user studies 

performed with these prototypes provided useful hints for our 

current research that, as reported in this article, is aimed at 

developing a usable system that can support SIE design in a real 

context. To this aim, an efficient vision system to recognize 

objects is required, because both smart objects and custom 

attributes are represented by physical objects that must be 

precisely detected. Object detection is, indeed, one of the areas that 

is maturing rapidly also thanks to deep learning innovation.  

Current object detection methods are typically based on 

Convolutional Neural Network (CNN) models, able to 

automatically recognize visual features exploiting different 

architectures [36]. One of the first models featuring convolutions 

and shared weights was LeNet [37]. However, the spread of the 

deep learning approach for image and object classification was 

determined by AlexNet [38], developed in 2012 as an enhanced 

version of LeNet. ZFNet [39] further improved AlexNet by 

exploiting deconvolution network, while GoogLeNet [40] 

introduced the Inception module reducing the number of network 

parameters. In 2016, the residual network ResNet became the state-

of-the-art for the practical use of such models [41]. Extensions of 

the CNN model have been introduced as Recurrent Neural 

Networks (RNN) [42] to learn long-term dependencies and their 

enhancement with Long Short-Term Memory Networks (LSTM) 

[43], while ConvLSTM [44] proved to have excellent spatio-

temporal sequence prediction capability. As a final remark, RNN 

must not be confused with Region-based Convolutional Neural 

Network (R-CNN) [45] and their immediate descendant Fast-R-

CNN [46], where image regions are exploited for feature extraction 

classifying all regions according to their common features. 

3. Smart Interactive Experiences 

Smart Interactive Experiences (SIEs) are usage situations 

created by synchronizing the behavior of multiple smart objects. 

In CH, SIEs improve visitors’ engagement and exhibition 

appropriation, as they allow people to shape their personal 

experience while interacting with smart museums, sites or 

exhibitions [4-8].  

To simplify the definition of ECA rules adopted by SIE 

designers, some authors of this paper recently proposed custom 

attributes as conceptual tools that allow domain experts to 

externalize their tacit knowledge [14]. These attributes contribute 

to the definition of a domain-oriented semantic which enriches the 

system for SIE design with operational meanings that allow 

domain experts to characterize the role of smart objects in a 

specific usage situation. Similarly to ontology concepts (e.g., see 

[32]), custom attributes are meant to add knowledge that can 

simplify the definition of ECA rules. 

The solution we propose is that, for each smart object, the 

domain expert defines properties (which, more technically, are 

attributes of the object) that can express the meaning and the role 

of an object according to the SIE dynamics. To better understand 

the notion of custom attributes and their value for the design of 

SIEs, we report in the following an example scenario where a SIE 

is a treasure hunt game designed by a professional guide of a 

museum. The SIE will be played by visitors of a museum. The 

professional guide modifies the game by properly configuring the 



involved smart objects by means of ECA rules. It is worth 

remarking that in our research experience we have created various 

games to improve the fruition of CH content. Games have been 

proved to be very valuable for transforming a sometimes boring 

visit to a CH site in engaging user experiences, and are also 

effective from an educational point of view [47-50].  

Scenario: Brando is a guide at the museum of Egnazia (Italy) 

where visitors can watch artefacts of different periods like the 

Messapian age, the Roman age and the late Roman age. The 

display cases are already equipped with RFID tags that visitors can 

read to obtain additional information. To make the exhibition more 

engaging, Brando organizes the visit as a treasure hunt. During the 

tour, Brando asks visitors to identify cases that display artefacts 

with a specific characteristic, for example, artefacts related to a 

specific age (e.g., Bronze, Iron, Messapian, Trajan) or to a specific 

purpose (e.g., fighting, cooking, personal care). To answer 

Brando’s quest, visitors must identify the cases that contain the 

right artefacts. Visitors will be provided with smart magnifying 

glasses that are able to recognize display cases and their properties. 

To answer Brando’s quests, visitors have to look at the case 

through their smart magnifying glass and push a button. If the 

answer is right, a video file providing additional information about 

the case artefacts is played on the magnifying glass. Also, the 

visitor gets some points as a reward. Otherwise, the magnifying 

glass shows a video indicating that the case does not match the 

quest. The treasure hunt continues with visitors performing all the 

proposed quests. The winner is the visitor that, at the end of the 

treasure hunt, gets the highest score. 

To define this visit, i.e., to create this SIE, Brando must 

configure the involved smart objects, i.e., the smart magnifying 

glasses and the display cases. Smart magnifying glasses appear 

like the traditional ones but, instead of the glass, they integrate a 

rounded display that visualizes the output of a camera installed on 

the backside, thus creating the effect of looking through a real lens. 

How can Brando design the treasure hunt by synchronizing the 

behavior of all such smart objects? The solution we propose is that, 

for each smart object, he defines properties that can express the 

meaning and the role of an object according to the game dynamics. 

For example, each smart magnifying glass is used to identify the 

group who carries it during the game. Thus, a possible attribute is 

“Group” (with values: Group1, Group2, etc.). Similarly, it is 

possible to enrich the display cases with attributes such as “Age” 

(with values: Iron, Bronze, Trajan, Messapian), “Purpose” (with 

values: fight, cooking, personal care), “Video file” (with values 

indicating the name of video file to be played on the smart 

magnifying glass when the case is the right one). Brando defines 

these attributes and their values according to the SIE he wants to 

create, without any constraint (syntactic or semantics) on the type 

of properties to be specified. This is the reason why they are called 

custom attributes.  

After defining custom attributes, Brando specifies the ECA 

rules controlling the behaviors of the smart objects. He uses a TAS 

implementing a visual paradigm that simplifies rule creation [30]. 

An example of a rule, which for brevity we represent here in 

formal syntax, is: 

Rulei: “IF a smart magnifying glass is close to a case  

                   WHERE case.Age = quest.Age  

                   THEN smart magnifying glass plays case.audio_file” 

Assigning custom attributes to objects has two main advantages 

when creating ECA rules. First, the language used to define the 

rules is closer to the domain-expert language since the variables 

used in the rules are the attributes previously defined by the 

domain expert himself. Without custom attributes, domain experts 

should deal with a low level of abstractions that force them to be 

aware of technological aspects (e.g., smart object identifiers, 

sensor names). Second, the attributes introduce high-level 

abstractions that favour generalization. Indeed, TASs that are not 

able to exploit custom attributes are not effective for defining ECA 

rules for SIEs, where dozens of smart objects are involved. For 

example, in the above scenario, Brando must create a set of rules 

like the following, which for brevity we represent here in a formal 

syntax: 

 Rulea: “IF the smart_magnifying_glass_015.RFID_reader 

detects RFID_tag_012654  

WHERE the current quest is Age = Iron age 

THEN the smart_magnifying_glass_015 plays 

video029.avi”.  

This rule has to be adapted and replicated for each case and for 

each smart magnifying glass. For example, if in Brando’s SIE 

there are n lenses and m cases, he must replicate Rulea n x m times. 

Thanks to the custom attributes, a single rule addresses this group 

of rules or, in general, an entire class of devices with the same 

behaviour. 

4. Supporting SIE design  

Three prototype systems that implement advanced interaction 

paradigms for defining custom attributes were recently created. 

They are implemented as part of a wider architecture that allows 

designers to flexibly combine those elements of the three design 

paradigms that best suit the design situations they have to cope 

with. This architecture allows designers to switch among the three 

prototypes, or further ones, offering a cross-modality. Details on 

all the three prototypes and the underlying architecture are 

reported in [15]. 

This paper focuses on the recognition algorithms that can be 

implemented in all of the three prototypes, thus we describe how 

they are used by only the Tangible system prototype.  

4.1. The Tangible system 

The Tangible system is based on the idea that domain experts 

can manipulate real objects to support tangible thinking, which is 

the ability to think by means of the manipulation of objects 

augmented with digital information [51], as well as to exploit the 

capability of tangible interaction to stimulate creative thinking [52, 

53]. With the Tangible system, domain experts manipulate two 

kinds of tangibles. The first ones are the smart objects of the SIE. 

If some smart objects cannot be manipulated due to their size (e.g. 

a statue), location (e.g., fix installation), or for other reasons, 

domain experts can use a small representatives like pawns in a 

role-playing game. To this aim, we introduced objects with 

elementary shapes (parallelepiped, cylinder, sphere, pyramid), 

whose affordance can refer to the original smart object (e.g. a 

parallelepiped can be used to refer to the smart display case). The 

second tangible that SIE designers manipulate for defining custom 

attributes are tangible attributes. Three types of tangible attributes, 

namely pen, compass and dice, are adopted to define textual, 

locational and numerical attributes, respectively. 

To illustrate how the Tangible system works, in the following 

we report how Brando defines custom attributes for his game. He 

puts on a table some of the smart objects involved in the SIE, e.g., 

a magnifying glass and a display case represented by a red cube 

(Figure 1). Then, he puts proper tangible attributes close to the 

smart objects. For example, he puts the pen close to the smart 

magnifying glass to indicate the definition of a textual attribute; 

then he attaches a post-it to the pen to specify the name and value 

of the attribute, e.g., “Group = group 1”. He repeats the same 

actions for each custom attribute he wants to define (see Figure 1). 



Then he uses a mobile app to take a picture of all the elements on 

the table. The pattern recognition algorithms described in 

Section 5 recognize the elements on the table, which are 

automatically converted into the definition of custom attributes 

(<attribute name = value> pairs). Thus, at the end, the smart 

magnifying glass in the system is enriched with the custom 

attributes <Group = group 1> (textual). Similarly, the case 

(represented by the red cube) is characterized by the attributes 

<Age = Messapian> (textual), <Points = 3> (numerical) and 

<Purpose = fight> (textual).  

After the definition of the custom attributes, Brando proceeds 

with the creation of the ECA rules (like the one reported in Section 

3) that allow him to specify the behaviour of the smart objects in 

the SIE. ECA rules are created by using one of the visual interfaces 

presented in [30]. 

 
Figure 1. Tangible system: smart object, tangible attributes and post-it notes 

used to define the custom attributes for a smart magnifying glass and a case 

represented by a cube. This figure is a reproduction of the real system for clarity 

purposes.  

5. Automatic Scene Understanding and Recognition 

The recognition algorithms developed to detect smart objects 

and tangible attributes have been integrated into a distributed 

system deployed in a cloud virtual environment. When the SIE 

designer takes a picture of the table in Figure 1 with his/her mobile 

device, the picture is sent to the remote system, which recognizes 

all the objects and translates the original physical composition into 

custom attributes associated with smart objects. The results are 

sent back to the mobile devices. To this aim, the remote system 

runs the following four phases: 

1. identification of the position of all the elements in the picture; 

2. classification of specific elements (smart object 

representatives, attribute object, QR code, post-it); 

3. understanding of the relationships between the classified 

elements, grouping them hierarchically; 

4. handwriting recognition. 

For each of these phases, a specific sub-module has been 

developed. For the first two phases the RetinaNet, a Convolutional 

Neural Network (CNN) model based on Resnet-50, has been 

employed [54]. RetinaNet is a unified network responsible for 

processing a convolutional feature map of the entire input image. 

The one-stage detector uses as feature extraction backbone, i.e. the 

ResNet architecture together with a Feature Pyramids Network 

(FPN) while at each pyramidal level are attached two specialized 

FCN subnetworks for classification and bounding box regression 

which benefits from a focal loss. The model has been pre-trained 

on COCO (Common Objects in COntext) [55], a large image 

dataset for object detection, segmentation, key point detection and 

caption generation. The COCO dataset contains 2.5 million 

instances belonging to 91 classes, labeled in 328,000 images, 

allowing the user to customize a CNN model that can be 

specialized by further training on new classes and object patterns. 

In this work, the transfer learning technique has been exploited by 

re-training only the classification layers by adding new classes in 

the final part of the CNN architecture while the backbone for 

feature selection is preserved (Figure 2) thus saving computational 

time and resources. The QR code recognition and translation is 

performed in the second phase. using brightness and contrast 

filters and exploiting an open-source standard tool that draws 

bounding boxes around the QR patterns in the image.  

Figure 2. The RetinaNet architecture scheme featuring a CNN and a FPN 

as backbone followed by two subnetworks for classify anchor boxes and for 

their regression to ground-truth boxes which are customizable while exploiting 

the transfer learning technique. 

In the third phase, the relationships between the recognized 

elements is computed using the Euclidean distance. Given a set A 

of attributes, a set P of post-its and a set O of Smart Objects, each 

post-it pi is associated with the nearest attribute object ai, thus 

composing the group {pi, ai}. Then, each attribute ai is associated 

with the nearest smart object (or QR code) oi. This process is 

iterated until all attributes are associated with a smart object (or 

QR code). 

Finally, in the fourth phase, two different models based on 

LeNet-5 classify the handwritten characters extracted. The two 

models are pre-trained on MNIST and EMNIST. MNIST dataset 

consists of 6,000 images for each of 10 classes as a training set and 

1,000 images per class as a test set while to classify alphabetic 

characters, the EMNIST Letters [56] dataset, with 4,800 images 

for each of the 26 classes for training and 800 images per class was 

used as a test.  

Several image pre-processing functions have been applied to 

optimize performances. After the post-it area crop and before 

translating the handwritten text, a series of image processing 

operations are performed, summarized in Figure 2: the post-it area 

is resized keeping its proportions, then the image is converted to 

grayscale color space and the contrast is increased by 40% to make 

the strokes more evident (Figure 3a); the brightness and contrast 

are increased to remove the background noise. Finally, the image 

binarization and colour reversal facilitate the creation of pixel 

histograms (Figure 3b).  

A first general pixel histogram is created by adding the pixel 

values for each column (image width) as a function of the x-axis 

with a high threshold to eliminate areas with strong noise; then a 

histogram is created considering pixel values for each line (image 

height) according to the y-axis, with the aim of cutting out the 

horizontal stripes also in case that there are more text lines (Figure 

3c). Then, for each stripe, histograms are created for columns 

(image width) according to the x-axis, allowing the cutting of 

possible character/digit patterns (Figure 3d). For each cropped 

piece, the black rows and columns are removed, resizing to 20x20 

pixels and maintaining the proportions while, finally, a padding of 



black pixels (Figure 3e) that keeps the pattern centred is added due 

to the compatibility with the MNIST/EMNIST image format. 

 
 Figure 3. A summary of the image processing pipeline to extract 

handwritten characters from a post-it image exploiting pixel histograms. 

During the analysis and design phases of the recognition 

system, the following technical constraints have been identified to 

ensure the practical use of the system: 

1. the picture background on which all objects are positioned 

must preferably have a uniform colour/pattern; 

2. the maximum number of smart-objects, QR codes and 

tangible attributes within a single picture should be limited; 

The adopted SIE prototype reflects the following limitations in 

the handwriting tasks:  

1. the written stroke follows a horizontal trend having the 

uniformity and thickness of a felt-tip pen; 

2. characters cannot overlap; 

3. the characters (alphabetical and numerical) must be written 

following the MNIST/EMNIST standard. 

In other words, the previous limitations are due to the fact that 

allowed handwritten text is not based on a Natural Language 

grammars but admits a limited set of words, so that the described 

solution can be referred as an “ad-hoc” one. To overcome these 

limitations and in order to be able to generalize results to a real 

scenario,  different state-of-the-art handwriting recognition 

models have been considered and compared [57-60]. This solution 

introduces a different approach to the post-it processing, so that 

explicit character segmentation can be avoided.  

The recognition techniques considered come from the 

combination of feature extraction backbones (Resnet or VGG) 

with an optional Thin-plate-spline (TPS) function to normalize 

input text images, a Bidirectional LSTM (BiLSTM) as sequence 

modeling and a prediction stage based on the Connectionist 

Temporal Classification (CTC) or an Attention mechanism (Attn) 

leading to the following techniques: 

1) TPS – Resnet - BiLSTM – Attn  [57, 59, 60];  

2) TPS – Resnet - BiLSTM – CTC [57, 58, 60]; 

3) None – VGG - BiLSTM – CTC [57, 59, 60]. 

In the experimental session, the “ad-hoc” solution is referred as 

MNIST + EMNIST, while results related to the generalized 

models are referred as in the previous list. 

6. Experimental Phase 

In order to test the system functionality illustrated in Section 5, 

experimental objects with different patterns and sizes have been 

selected together with three tangible attributes (pen, compass, and 

dice) having various patterns (see Table 1).  

Table 1.  The elements (smart object representatives, tangible attributes, post-
it and QR codes) used in the experiment and their features. 

Object Size (cm) Colors Function 

Pyramid 1.5 x 1.5 x 2.2 green, brown smart object represent. 

Sphere 1.5  orange, black smart object represent. 

Cylinder 1.5 x 1.5 x 6.1 violet smart object represent. 

Parallelepiped 7.3 x 2.5 x 0.4 blue smart object represent. 

Dice 1.0 x 1.0 x 1.0 red attribute object  

Pen 9.0 x 0.6 x 0.6 black attribute object 

Compass 6.5 x 6.5 x 0.7 white, yellow, blue attribute object 

Post-it 7.5 x 7.5 yellow 
handwritten values of a 

tangible attribute 

QR code 3.5 x 3.5 black, white 
placeholder objects that 

are too large  

 

6.1. Setup and Dataset 

The recognition system is developed in a Linux environment, 

exploiting deep learning models with Keras and Python. CNN 

training has been performed with an NVIDIA GTX 1060 with 6 

GB of VRAM and with an NVIDIA Jetson TX2, which has also 

been used for testing. 

Two experimental datasets have been produced acquiring 

pictures with a Huawei Mate 20 Lite smartphone at a resolution of 

5120x3840 pixels. The Training dataset consists of 70 pictures for 

each of the eight classes listed in Table 1, used to train the CNN to 

detect and classify the object's patterns for a total of 560 pictures. 

The pictures of a single class portray the object from different 

angles and distances. Considering each ‘smart object’ class, about 

5% of their training images contains the object together with others 

in order to provide the CNN examples of patterns grouped 

together. When considering the training pictures for an ‘attribute 

object’, on the other hand, the amount increases to about 15% since 

it is more likely that in a picture the tangible attributes are repeated. 

The XML ground-truth annotation for each element in the training 

image consists of ‘name’ tag and the bounding box coordinates. 

The optimal parameters found for the CNN training were batch-

size=1, steps=653, epochs=9 also exploiting data augmentation 

techniques (flip, rotation, scaling, translation, shear). Moreover, 

custom anchors to optimize peculiar pattern recognition have been 

added because the pen pattern (thin and elongated) was difficult to 

identify, despite the training. 

The Test dataset developed for this study consists in set of 102 

pictures that in total contain 290 distinct objects (Smart Objects 

and QR codes) and 533 Tangible Attributes each of which with an 

attached handwritten post-it. All the pictures have been taken from 

two different points-of-view: orthogonal to the surface where 

objects stand and at 60 degrees between the perpendicular of the 

surface and the observer. Three experimental classes have been 

designed (each with 34 images): the Easy class features 1 or 2 

objects with a few attributes; the Medium class features 3 

associated with multiple (2 or 3) tangible attributes, while the Hard 



class presents complex scenarios with 4 elements, even reaching 

more than 20 objects to recognize at once.  

To automate the result checking, each picture has been labeled 

through a CSV ground-truth file with an ordered list of the present 

elements, each with a sub-list of the related tangible attributes and 

text (post-it). The resulting output has the same format as the 

ground-truth with the addition of the bounding-box coordinates for 

each recognized element. 

6.2. Metrics and Results 

To express the effectiveness of the system in the object 

classification (smart objects and QR codes), the Accuracy metric 

is computed as the ratio between correctly classified elements and 

their total number in the picture. Attribute and post-it objects are 

evaluated using a Group Accuracy metrics, which indicates that 

the pattern has been correctly classified and has been assigned to 

the related smart object. The handwritten text matching employs 

two metrics: a total matching with the ground-truth text and a 

normalized Hamming distance (ratio between recognized 

characters in the right positions and the longest text). 

 
Figure 4. Classification and hierarchical grouping done by the System. 

Figure 4 visually depicts the output of the pipeline. The 

bounding box, class name and confidence highlight the element 

classification while the straight blue lines show the hierarchical 

grouping. The results for the three experimental classes in Table 2 

present a Classification Accuracy of 273/290 = 94.1% (for SO it 

is 146/154 = 94.8% and for QR codes it is 127/136 = 93.4%), while 

for tangible attributes the overall Grouping Accuracy is 533/563 = 

94.7%. Notice that the overall Classification Accuracy is beyond 

93% for all the experimental scenarios but, while for the QR codes 

it decreases when complexity increases, for the Smart Objects the 

‘Easy’ and ‘Hard’ settings are very close (96.4% vs. 96.2%). The 

Grouping Accuracy regarding the tangible attributes follows 

almost the same trend as the Classification Accuracy and always 

remains over 93%. 

The evaluation of the handwritten text matching is in Table 3 

with a Total Matching accuracy of 287/533=53.8% and a 

Normalized Hamming that reaches an average accuracy of 80.1%.  

reports a Total Matching metric of 287/533=53.8% and a 

Normalized Hamming that reaches 80.4%. 

Thus, there are some characters that are hard to recognize (for 

instance 1, 4 and 7; zero is mismatched with O). Table 3 reports 

the results for the three experimental classes. Notice that while the 

Total Matching remains about 50%, the Normalized Hamming is 

always over 79%. Although there are works that achieve better 

performances using CNN [61, 62], when comparing their time 

performances, the presented method is faster and computationally 

inexpensive in the high-complex settings previously exposed, 

allowing a real-time object classification pipeline with 

handwritten text recognition facilities. Indeed, the entire pipeline 

execution requires an average time of about 2 seconds, of which 

1.2s for the QR code recognition, which appears to be the 

bottleneck for real-time usage. 

Table 2. Results for the experimental classes with the Classification Accuracy 
for Smart Object (SO) and QR code (QR), and the Grouping Accuracy for the 

tangible attributes (Pen, Compass, Dice, post-it elements). 

Experimental 

class 

Objects (Smart Obj. and QR codes) Tangible 

attributes 

Easy 

(1/2 elements) 
51/52 = 98.1% 

SO: 27/28 = 96.4%  

73/75 = 97.3% QR: 24/24 = 100% 

Medium 
(3 elements) 

95/102 = 93.1% 

SO: 42/46 = 91.3%  

208/222 = 93.7% QR: 53/56 = 94.6% 

Hard 

(4 elements) 
127/136=93.4% 

SO: 77/80 = 96.2%  

252/266 = 94.7% 
QR: 50/56 = 89.3% 

Table 3. Results for the handwritten text correspondence exploiting two 
evaluation metrics: Total Matching and Normalized Hamming. 

Metric Easy class Medium class Hard class 

Total Matching 44/73 = 60.3% 103/208 = 49.5% 140/252= 55.6% 

Normal. Hamming 79.1% 81.9% 79.4% 

When considering the explorative study about the new 

handwritten recognition methods, results in Table 4 show that not 

all the new techniques used for text recognition achieve better 

results than the originally MNIST/EMNIST proposed method. The 

Resnet - BiLSTM – Attn is the combination that outperforms 

previous results with a +4.4% for the total string matching 

(between ground truth and the predicted one) and with a +4% 

considering the Hamming match metric. For techniques 2 and 3 

instead, the Normalized Hamming metric is -5.6% and -3.3% 

respectively and the Total Matching results to be more than 20% 

lower in technique 3 when compared with the original.   

Table 4. Results for the handwritten text correspondence exploiting 

techniques based on state-of-art CNN with the analysis of the overall post-it 
written line instead of a character to character approach. 

Technique Total 

Matching  

Normal. Hamming (avg) 

0) MNIST + EMNIST 53.8 % 80.1 % 

1) TPS - Resnet - BiLSTM - 

Attn 

58.6 % 84.1 % 

2) None - VGG - BiLSTM – CTC 43.3 % 76.8 % 

3) TPS - Resnet - BiLSTM - CTC 29.3 % 74.5 % 

It must be underlined that the obtained results confirm the ones 

reported in the comparative study by  Baek et al. [60]. The Resnet 

- BiLSTM - Attn emerges as the best choice also able to 

outperform the “ad-hoc” solution (MNIST+EMNIST) initially 

adopted due to SIE prototype limitations.  

7. Discussion and conclusions 

This article has presented a system that supports CH experts in 

creating Smart Interactive Experiences by enabling them to 



manage various smart objects in an IoT environment. Pattern 

recognition and computer vision techniques, like convolutional 

neural networks, were introduced to automate the definition of 

semantic properties associated with the smart objects involved in 

a SIE. Promising and encouraging results emerged during the 

evaluation of the techniques used. The recognition of smart 

objects, QR codes and tangible attributes have an accuracy over 

90% even in complex configurations with several objects in the 

same picture. A precision of about 84% resulted for the recognition 

of handwritten text on post-it notes. At the same time, it must be 

considered that texts that are wrongly recognized can be quickly 

edited via the app as well as post-processed by a grammar 

corrector. Proposed solutions have been considered within a real-

time application and can be further extended considering other 

languages [61, 63, 64].  

 As future work, we are planning to evaluate the overall system 

by involving CH experts in the creation of a SIE. Contrary to 

previous studies conducted in a controlled environment, the 

system will be evaluated in a more ecological environment during 

a field study. This will be possible thanks to the advances 

presented in this paper, which made our initial prototypes evolve 

into a more powerful system. In addition, we also aim to improve 

the proposed recognition techniques considering a wider set of real 

use cases. 
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