
Making mashups actionable through
elastic design principles

Carmelo Ardito1, Maria Francesca Costabile1, Giuseppe Desolda1, Markus Latzina2,
Maristella Matera3

1Dipartimento di Informatica, Università degli Studi di Bari Aldo Moro
Via Orabona, 4 – 70125 – Bari, Italy

{carmelo.ardito, maria.costabile, giuseppe.desolda}@uniba.it
2Strategic Projects, Products & Innovation – Technology, SAP SE

Dietmar-Hopp-Allee 16 – 69190 – Walldorf, Germany
markus.latzina@sap.com

3Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano
Piazza Leonardo da Vinci, 32 – 20134 – Milano, Italy

maristella.matera@polimi.it

Abstract. This paper discusses motivations and requirements leading to elastic
environments where relevant information and the functions that can be per-
formed on it can be shaped by end users at runtime. As a solution for creating
elastic environments, a framework is presented which exploits methods for the
mashup of heterogeneous resources and elastic features that permit the easy
transition of information between different task contexts according to the re-
cently proposed notion of transformative user experience.

Keywords: End-User Development, Transformative User Experience, Data In-
tegration, Mashups, Composition Platforms, Elasticity, Task Semantics

1 Introduction and motivation

Due to the new technological landscape (e.g., cloud computing, the software as a
service (SaaS) paradigm, the new “API economy” and the resulting service eco-
systems), an extraordinarily high number of data is available online. Today, almost
any person uses sophisticated mobile devices supporting the pervasive access to data
and applications; this determines an increasing demand by the end users (called “us-
ers” in the rest of this paper) to effectively access, integrate, and visualize the infor-
mation offered by such resources. In this respect, platforms for service composition
play an important role as they let users integrate heterogeneous information that oth-
erwise would be totally unrelated [1]. Web mashups are indeed “composite” applica-
tions constructed by integrating ready-to-use functions and content exposed by public
or private services and Web APIs [2]. As compared to consuming what is offered by
each single resource in isolated ways, mashup platforms enable users to aggregate
information coming from the various resources and create synchronized visualiza-
tions. In such ways, mashups generate new value.

Several mashup tools proposed so far, the so-called mashup makers, provide
graphical notations for combining services [3-6]. An example is Yahoo!Pipes [7] (for
other examples see [2]). As compared to manual programming, such platforms allevi-
ate the mashup composition tasks, but they require an understanding of the integration
logic (e.g., data flow, parameter coupling, composition operator programming). Stud-
ies with users show that they are still difficult to use by non-technical users (e.g. [8]).
According to the End-User Development (EUD) vision, enabling a larger class of
users to create their own applications requires intuitive abstractions and notations. To
reach this goal, we have developed a mashup platform, described in [1], which is
based on the EUD vision and exploits a meta-design approach to support users in
mashup creation. More details on how users create their own mashups with this plat-
form are illustrated in [1, 9].

Our recent research on the EUD of mashups has led us to identify some strengths
and weaknesses of the proposed approaches. In particular, on the basis of findings of
user studies that we performed to validate our mashup platform [10], we believe there
is still room for enhancing the mashup paradigm, to empower the users to play a more
active role than just consuming the finally visualized information. Transitions across
different usage situations, which imply different functionality to be applied on infor-
mation, should become possible without requiring users to switch among multiple
applications. This means that rigid schemas for information provisioning and fruition,
generally adopted by isolated, pre-packaged applications, have to be overcome by
instrumenting systems with an intrinsic flexibility. The application functionality must
dynamically emerge at runtime, based on the users’ actions that determined the cur-
rent situation, i.e., the context and tasks performed.

This paper addresses such a need for elasticity and also presents, as a possible solu-
tion, a framework where mashup composition paradigms are revisited and potentiated
through the notion of Transformative User Experience (TUX) [11]. TUX is a recently
proposed approach that aims to natively support users in a variety of spontaneously
self-defined task flows, not limiting them to work along highly specific use cases, as
typical for applications which are driven by workflow engines or which adopt pre-
defined patterns of guided procedures. The goal is to overcome common application
boundaries enabling user interaction with information in terms of task objects (i.e.,
data elements, their visualization and specific functions used to perform a task) within
dedicated, contextual task environments assembled through interrelated sets of task
containers. The distinctive feature of such containers is that they provide functions to
process the data they include that strictly relate to the current context as informed by
the task actually performed by the users. Thus, the users’ task flow is not predefined,
but it is determined at runtime based on the users’ actions, as the users select proper
containers depending on the current situation and on the functionality (e.g., data ma-
nipulations) needed to further proceed with their task. In the architectural framework
resulting from the integration of the mashup paradigm and TUX, elasticity is thus
pursued by allowing users: i) to select and combine pertinent data sources through
mashup composition; ii) to explore and manipulate the integrated data sets in ways
that allow them to move across various task contexts while performing varying func-
tions that become available depending on the current usage context. In this way, the

information displayed by the mashup becomes actionable, thus really useful with
respect to the users’ concrete tasks and overall purpose.

In this regard, this paper proposes a systematic approach to establishing actionable
mashups, outlining a framework in Section 2. The demo description provided in [9]
reports a scenario motivating such framework. Section 3 provides the conclusions.

2 A Framework for Actionable Mashups

This section describes how to extend the coverage of mashups by augmenting infor-
mation exploration, generally operated on top of mashup data sets, towards more
active prosumption (i.e., genuinely merging “production” and “consumption”) and
sense making. The important feature we focus on is to support the accomplishment of
sophisticated sense making tasks on the visualized information thanks to additional
manipulations driven by task semantics. In other words, we aim to enable a kind of
active sense making, in which the presented information can not only be viewed dif-
ferently and in meaningful ways towards the gaining of insights, but moreover trans-
formed effectively towards the actual accomplishment of task goals. In this regard,
the visualizations of data retrieved from data sources, that in a mashup environment
can occur by means of UI templates, are enriched by augmenting the UI templates
with the notion of TUX task containers, i.e., elements whose role is to supply task-
related functions for manipulation and transformation of task objects along user-
defined task flows [12]. As a consequence, through task containers and their particu-
lar task semantics, users are empowered to interact with the displayed information in
a contextual manner, thus raising information in mashups to the level of task objects
the user can act upon.

As represented in Fig. 1, system objects (i.e., data items), resulting from the
mashup, and their visualizations within UI templates (UI objects) can be promoted to
the role of task objects that in turn can be endowed with and treated according to the
various task functions offered by the containers in which they are cast. Task objects -
not simply data items or their representation in UI templates - become the very ob-
jects of user interaction, with the result that the users are not only allowed to consume
the information displayed by the mashup, but they are also enabled to manipulate and
transform it, i.e., to prosume it, in accordance with the tasks they intend to perform. In
principle, mashups – without considering TUX principles – can be equipped with
some functionality that has task-semantic character, exceeding the mere modification
of data visualizations. Yet, in such cases the task semantics would reside in the appli-
cation implicitly and in a rather hard-wired fashion. For example, a component for the
visualization of products could be enriched with a functionality to send emails to ven-
dors. However, this would be a hard-coded function, which the users could not adapt
flexibly into their spontaneously defined task flow. According to TUX, it would be
instead possible to apply the communication capability to other object types, for ex-
ample to submit inquiries on the products to consumer forums.

Fig. 1 illustrates the organization of a framework supporting this new task-centric
perspective on the organization of an EUD system based on the mashup paradigm.

Modules supporting mashup composition and execution are integrated with modules
for the manipulation of task objects according to TUX principles. Typical mashup
modules are exploited to create the base of UI objects to be then manipulated as task
objects. Within the mashup engine, the data access module extracts data from the
services on which the system relies on (by means of the mashup components [2]). The
integration module interprets user composition actions performed at the UI level and
creates an execution model determining how system objects have to be integrated.
The results, i.e., the integrated system objects, are rendered as UI objects within UI
templates. Such UI objects provide the actionable information on which task func-
tions can be applied. In this sense, UI objects are promoted to the level of task objects
by virtue of the functionality provided by the task-semantic layer. In Fig. 1, the dot-
ted-dashed line connecting a UI template (used for rendering various views of UI
objects) and a task container (hosting task objects) makes this promotion explicit.

The task-semantic layer then provides for the identification of the current task con-
texts, based on the interpretation of user actions as they manipulate task objects by
applying container-specific task functions; it also supports the casting of task objects
within and across various task containers. At the UI level, a task container “wraps”
mashup UI templates, so that the user can act on the displayed UI objects by means of
the task-related manipulations. This results in treating UI objects as task objects by
virtue of their interpretation through the context, which is defined and provided by
each task container. Different UI templates within a task container can be used for
providing different views of the same task objects without changing however the
semantics of the objects as implied by the task container. Changes of views would in
fact still be in line or even supportive of the particular task semantics.

Fig. 1. Overall organization of the framework supporting the interaction with mashups en-
hanced according to TUX principles

It is worth noticing that, in order to associate different task semantics to data ex-
tracted from heterogeneous resources, it is important to maintain continually the rela-
tion of the elements representing the task objects to their original context. According
to the framework shown in Fig. 1, establishing and maintaining the identity of task
objects (as data returned by a given resource) is supported by the task context engine,
in particular by its identity management component.

Another challenge is to deal with the need of users to endow objects with meanings
that depend on the task they choose to accomplish. From the system perspective, a
contextual relationship management module (see Fig. 1) allows task objects to be
augmented by users with subjective meanings and functions that relate to the task
semantics of the selected containers where the interaction with the objects takes place.
More specifically, this is handled by the generic function of casting, which implies
that task objects are exposed to the aforementioned container-specific task semantics.

In any concrete scenario, users may interact with task objects in a sequence which
spans multiple containers, along spontaneously defined trajectories that however have
to keep track of the sequence of the various task semantics a given set of task objects
was subjected to. The overall process can thus be considered a kind of “sequential
casting” that in the framework of Fig. 1 is managed by the transition management
module.

3 Concluding Discussion

Mashups are data-centric applications that assist users in easily composing heteroge-
neous data sources to support information retrieval tasks. They are considered a solu-
tion for the important trend of data exploration processes, which exceed one-time
interactions and allow users to progressively seek for information. However, some
factors are still preventing a wider use of mashups in real contexts. New ways are
needed to support sense making on information composed through mashups. We are
confident that the introduction of task containers, as entities which carry task seman-
tics, can accommodate such user requirements.

The development of a suitable methodology based on the possible synergies be-
tween TUX principles and mashup composition methods has a foundational character
that can solve several challenges. We are aware that much work still needs to be done
in order to obtain a working platform. With this paper we however aim to stimulate a
new way of thinking towards the definition of systems that really support users in
shaping the software environments they interact with, according to their actual and
emerging needs.

Acknowledgments. This work is partially supported by the Italian Ministry of Uni-
versity and Research (MIUR) under grant PON 02_00563_3470993 "VINCENTE"
and by the Italian Ministry of Economic Development (MISE) under grant PON In-
dustria 2015 MI01_00294 "LOGIN".

References

1. Ardito, C., Costabile, M.F., Desolda, G., Lanzilotti, R., Matera, M., Piccinno, A., Picozzi,
M.: User-Driven Visual Composition of Service-Based Interactive Spaces. Journal of
Visual Languages & Computing 25(4), pp. 278-296 (2014)

2. Daniel, F., Matera, M.: Mashups - Concepts, Models and Architectures. Springer (2014)
3. Ennals, R., Brewer, E., Garofalakis, M., Shadle, M., Gandhi, P.: Intel Mash Maker: join the

web. SIGMOD Rec. 36(4), pp. 27-33 (2007)
4. Copeland, T.: Presenting archaeology to the public. In: Merriman, T. (ed.), Public

Archaeology, pp. 132-144. Routledge, London, UK (2004)
5. Wong, J., Hong, J.I.: Making mashups with marmite: towards end-user programming for

the web. In: SIGCHI Conference on Human Factors in Computing Systems (CHI '07), San
Jose, California, USA. pp. 1435-1444. ACM, New York, NY, USA (2007)

6. Daniel, F., Casati, F., Benatallah, B., Shan, M.-C.: Hosted Universal Composition: Models,
Languages and Infrastructure in mashArt. In: Laender, A.F., Castano, S., Dayal, U., Casati,
F., Oliveira, J. (eds.), Conceptual Modeling - ER 2009. Vol. LNCS 5829, pp. 428-443.
Springer, Berlin Heidelberg (2009)

7. http://pipes.yahoo.com/pipes/ - Last access: March, 4th, 2015
8. Namoun, A., Nestler, T., De Angeli, A.: Conceptual and Usability Issues in the

Composable Web of Software Services. In: Daniel, F., Facca, F. (eds.), Current Trends in
Web Engineering - ICWE '10. Vol. LNCS 6385, pp. 396-407. Springer, Berlin Heidelberg
(2010)

9. Ardito, C., Costabile, M.F., Desolda, G., Latzina, M., Matera, M.: Hands-on actionable
mashups. In this volume

10. Ardito, C., Bottoni, P., Costabile, M.F., Desolda, G., Matera, M., Picozzi, M.: Creation and
Use of Service-based Distributed Interactive Workspaces. Journal of Visual Languages &
Computing 25(6), pp. 717-726 (2014)

11. Latzina, M., Beringer, J.: Transformative user experience: beyond packaged design.
Interactions 19(2), pp. 30-33 (2012)

12. Beringer, J., Latzina, M.: Elastic Workplace Design. In: Wulf, V., Randall, D., Schmidt, K.
(eds.), Designing Socially Embedded Technologies in the Real-World. Springer, London
(2015)

