
adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2014

Enhancing Workspace Composition by Exploiting

Linked Open Data as a Polymorphic Data Source

Giuseppe Desolda

Dipartimento di Informatica, Università degli Studi di Bari Aldo Moro

Via Orabona, 4 – 70125 – Bari, Italy

giuseppe.desolda@uniba.it

Abstract. In the last decade, the World Wide Web has been evolving as a data

infrastructure, where a wide variety of resources is increasingly being made avail-

able as Web services. This trend is pushing the researchers to investigate ap-

proaches like composition platforms, aimed at empowering end users to access,

compose and use these services. Despite the wide availability of data sources,

due to the specific and diverse end users’ information needs often no data source

can satisfy these needs. This limits the adoption of composition platforms in real

contexts and everyday use. In order to overcome this limitation, this paper pre-

sents a polymorphic data source that exploits the wide availability of information

structured in the Linked Open Data cloud. To build this data source, a semi-au-

tomatic annotation algorithm is presented that creates semantic annotations for

services available in a composition platform. An implementation of this approach

in a mashup platform is described.

Keywords: Mashup, Linked Open Data, Semantic Web.

1 Introduction and motivations

Over the past years, we have been facing a growing amount of heterogeneous data

sources available on the Web. When writing this paper, the site programmableweb.com

lists more than 12000 API to retrieve data or exploit functionalities. This paper is about

data retrieval APIs that can be classified into cross-domain (Wikipedia, YouTube,

Google, etc.) or domain specific APIs (Government, Life Science, Music, etc.). This

huge amount of information available on the Web and the opportunities offered by Web

2.0 are pushing researchers to investigate new methodologies, technologies and mech-

anisms to allow laypeople, i.e., end users without expertise in programming, to access

and manipulate data sources by exploiting visual mechanisms. In the last 10 years, dif-

ferent platforms with various composition paradigms have been proposed [1, 2]. Typi-

cally, they implement visual mechanisms to access, create, compose, modify and use

data sources usually available through the APIs. They are often known as mashup plat-

forms.

According to [3], different features affect the mashup quality, for example, the data

quality dimension, characterized by accuracy, timeliness, completeness and availabil-

Cite as:
Desolda G. (2015). Enhancing Workspace Composition by Exploiting Linked Open Data as a Polymorphic
Data Source. In Proc. of the 8th International Conference on Intelligent Interactive Multimedia Systems and
Services (IIMSS 2015), Sorrento (Napoli), Italy, 17-19 June 2015. Vol. 40, pp. 97-108.
ISBN: 978-3-319-19829-3, DOI: 10.1007/978-3-319-19830-9_9

ity. Regarding this dimension and in particular the completeness, the data sources avail-

able nowadays describe a portion of a domain and often do not include many details. It

is sometimes possible to overcome this limitation by composing different data sources,

but in some cases, when the end users’ information need is more specific, no data source

could provide the useful information. This is a vast limitation in exploiting mashup

platforms in real contexts. In fact, although the current platforms allow laypeople to

easily use and compose data sources, often they cannot benefit from a composition

platform due to a lack of data sources if used in real contexts.

To overcome this lack of information and better satisfy the end users’ information

needs, this paper presents a new polymorphic data source built upon the Linked Open

Data cloud. It is called polymorphic because it provides mutable information with re-

spect to the data sources of which it is composed.

The remainder of this paper is structured as follows. Section 2 describes the poly-

morphic data source, the use of Linked Open Data to build this data source and the

integration of the polymorphic data source in a mashup platform. Section 3 describes

the annotation algorithm and its performance evaluation. Section 4 reports related

works. Section 5 concludes the paper and also outlines future work.

2 Polymorphic data source: a source for many purposes

To explain the idea of a polymorphic data source, let us consider the following scenario

that refers to a typical situation when laypeople want to exploit a platform to mashup

services according to their needs, but at a certain point they leave it because they do not

find useful data sources available through the platform. “John is using a mashup plat-

form. He adds the SongKick service to his workspace to find upcoming musical events

in his city. He also needs to retrieve, for each event artist, a list of related videos. For

this purpose, John composes SongKick artist attribute with YouTube. Now, John has

two widgets in his workspace: SongKick and YouTube; the first allows him to search

upcoming musical events and the second automatically performs a search (with the art-

ists’ name) each time John clicks on a specific musical artist in the list of upcoming

events. Afterwards, he wants to know, for each artist, details such as genre, starting

year of activity and artist photo. *Searching for useful services on the composition plat-

form, John does not find any service that satisfies his needs. Thus, John is not supported

anymore by the platform and has to go to the Web for a usual (manual) search for the

specific information”.

Let us now look at a scenario that is the same as the previous one until the asterisk,

but it goes on with the following. “To retrieve the desired information, John decides to

expand the SongKick artist attribute with the polymorphic data source. When he

chooses the polymorphic data source, the platform shows a list of new properties related

to the concept of musical artist. Thus, John decides to create the new data source with

the genre, the starting year of activity and the artist photo properties. Henceforward,

John can find a list of upcoming events on SongKick and can visualize the additional

artist’s information on the polymorphic data source by clicking on a specific artist on

SongKick (Fig. 1)”.

Fig. 1. Composition of DBpedia polymorphic data source with SongKick artist attribute.

In the previous scenario, John could continue to compose SongKick with the same

polymorphic data source starting from other SongKick attributes. For each attribute that

John decides to expand, the polymorphic data source provides different properties re-

lated to the semantics of the starting attribute (for example, for the SongKick place

attribute, properties like borough, census, year and demographics should be shown).

Thus, this type of data source is considered polymorphic because it can provide differ-

ent information (properties) according to the data source attribute that is selected. On

the contrary, the classic data sources (YouTube, Wikipedia, etc.) provide the same

properties independently of the selected attribute.

2.1 Linked Open Data as a basis for the polymorphic data source

The polymorphic data source is built by exploiting the huge amount of information

available in the Linked Open Data (LOD) cloud. In 2009, Tim Berners-Lee defined

Linked Data as “a set of best practices for publishing and connecting structured data on

the Web” [4]. The goal of the Linked Data project is to publish data so that they are

readable by a human and an automatic agent. The LOD are Linked Data distributed

under an open license that allows its reuse for free. At the time of this paper, there are

more than 1000 KB datasets published in the LOD cloud.

Nowadays, one of the biggest KBs in the LOD cloud is DBpedia (the structured

version of Wikipedia). The DBpedia English version describes 4.58 million things, out

of which 4.22 million are classified in its ontology. In the DBpedia ontology, there are

685 classes. Thanks to the availability of this huge amount of information and its se-

mantics structured in the DBpedia ontology, DBpedia has been chosen as the starting

point to create the polymorphic data source.

An annotation algorithm has been developed to annotate each attribute of each ser-

vice (available in a platform) with a class of the DBpedia ontology. Each class has to

be semantically similar to the attribute.

2.2 An implementation in a mashup platform

The algorithm and the polymorphic data source have been implemented in the mashup

platform described in [5]. This platform provides a composition paradigm elicited dur-

ing users’ studies [6] and evaluated during field studies in cultural heritage and tech-

nology enhanced learning domains [7]. The platform is implemented by using

Primefaces, an open source User Interface (UI) component library for JavaServer Faces

(JSF) based applications. It is deployed on a remote Apache Web server and a Mysql

database is used for the user account management. It provides different mashup mech-

anisms to access, compose and use services. In particular, the end user can add services

to his own workspaces and can compose services by using two mashup mechanisms

called join and union [6].

In this paper only the join composition is considered. As reported in the scenarios,

with the join function the user composes a service A with a service B, in order to expand

the results of service A with details provided by service B. This composition is assisted

by a wizard procedure that the user activates by clicking on a gearwheel button in the

upper right corner of the service widget. By clicking on this icon, the user 1) selects the

attribute that he wants to expand, 2) selects the data source from which to gather infor-

mation (DBpedia in our case), 3) chooses a visual template to visualize the new results

and finally 4) uses drag&drop to map a subset of service attributes into the visual tem-

plate. The fourth step is the most interesting for the aim of this paper. In fact, while

composing a service with another ‘traditional’ service the list of attributes in step 4 is

always the same, by choosing the polymorphic data source the list of attributes is dif-

ferent in relation to the semantics of the selected attribute during step 1.

In the current implementation, the service that provides details is shown as a window

only when the user clicks on a specific item (e.g., click on “the Weeks” artist in Fig. 1).

This visualization emerged as requirement during the users’ study described in [6].

3 An algorithm for data source annotation

This section describes a semi-automatic algorithm that creates semantic annotations for

services available in a composition platform. Its performance evaluation is also re-

ported.

3.1 Generation of a set of candidate classes to annotate attributes

In order to create this polymorphic behaviour, a mapping step is required between all

data source attributes registered in the platform and the DBpedia ontology classes. In

general, this problem falls in the ontology matching area. In order to start from consol-

idated approaches, the methodologies surveyed in [8, 9] were investigated with the aim

of creating an ad-hoc solution based on the literature, without the pretension of building

a new ontology matching methodology. Furthermore, a great deal of specific literature

in the semantic web area has already been produced for the problems of semantic an-

notation of a service [10]. These approaches have been taken into account to design the

proposed algorithm.

The proposed solution can be classified as a semi-automatic and instance-based an-

notation algorithm. As is described in the following, it is defined as semi-automatic

because a user has to provide a set of example queries (about 10) when a data source is

registered in the platform. Furthermore, it is defined as instance-based because it infers

a set of candidate classes to annotate the attributes starting from the results (instances)

of the queries. The main goal of the algorithm is to annotate each attribute of each

service with a DBpedia class that is semantically similar to the attribute. The algorithm

is reported in Table 1. The criterion for choosing the most important class, as specified

in line 12 of Table 1, is illustrated in Section 3.2.

Table 1. The instance-based semi-automatic annotation algorithm

1:
2:

3:

4:
5:

6:

7:
8:

9:

10:
11:

12:

13:
14:

Input: Set T of Triples t=(s,A,Q), s is a data source, A is a set of attributes a for s, and Q is a

set of queries on s
Output: Set R of results r=(s, L), s is a data source, L is a set of <ai,li> where a is an attribute

of s and l is its label

for each t ∈ T do

create I as empty set of instance results for queries and an empty set M

for each q ∈ Q do
 query s by using q and collect instance results into I

end for

for each attribute a of s do

 create L_temp as empty set of labels for a

 for each i ∈ Ia do

 query DBpedia by using value of i and obtain a set C of classes
 put values of C into L_temp

 end for

 calculate most important class l in L_temp and put <a,l> into L

end for

end for

In order to understand the algorithm, an example of its execution on a real data

source is here reported. Let us consider SongKick data source s and a set Q of queries

on it (e.g., London, Liverpool, Rome). This set Q is manually provided only once at the

time of service registration in the platform. Each instance of the SongKick results is

characterized by the set of attributes A= {artist, place, event_type, event_name, date}.

The algorithm starts by executing all the queries in Q on SongKick and by collecting

all the results in set I. For each attribute ai in A, the algorithm considers all the instances

selecting only the ai attribute values. For example, after having queried SongKick with

queries in Q, for the artist attribute the algorithm creates set Iartist= {Ligabue, U2, One

Direction, Taylor Swift,...}, that is a set of musical artists who will perform at places

stored in Q. The algorithm uses each instance of Iartist to query DBpedia. The aim is to

find the same instance of each element in Iartist as a DBpedia thing and add its classes in

set L_temp. Obviously, although the instances of each attribute have the same meaning

(for example, all artist instances are singers), not all the retrieved DBpedia things are

instances of the same class. Thus, at the end of the execution on all the attributes, the

results appear as shown in Table 2, where the Class column indicates the DBpedia

classes inferred for each attribute and the % column indicates the frequency of the clas-

ses at the end of DBpedia queries. Furthermore, when the algorithm queries DBpedia,

sometimes the retrieved things are wrongly classified. For example, when DBpedia is

queried with the ‘Ligabue’ string, three thing instances of different classes are retrieved:

one instance of Artist (Luciano Ligabue, singer), one instance of Agent (Antonio Liga-

bue, painter) and one instance of Italian_opera_singer (Ilva Ligabue, opera singer). Ob-

viously, the second and third things are false positives that create noise in the set

L_temp. However, it is empirically observed that this noise represents only a tiny per-

centage (typically less than 4%). For this reason, no classes less than 4% are considered

in the rest of the algorithm.

Table 2.Candidate classes for annotable attributes of the SongKick data source; the Class column in-

dicates the DBpedia class associates; the % coloumn indicates the frequency of each class

Artist EventType Location

Class % Class % Class %
Agent 14 Event 25 Place 17

Work 13 FilmFestival 25 Settlement 11

MusicaWork 12 Organization 13 PopulatedPlace 11

Organization 7 Television 13 Work 6

Album 7 Agent 12 Album 6

Person 7 TelevisionShow 12 MusicalWork 6

Band 6 Agent 6

Artist 6 Organization 6

Single 5 Building 6

MusicalArtist 5 Architectural 6

… … … …

Until now, the algorithm has collected a set of promising (candidate) classes to an-

notate attribute data sources. The easiest annotation solution could be to select the most

frequent class (In Table 2 Agent for Artist, Event for EventType and Place for Loca-

tion), but the performance of this solution is improved by the second step of the pro-

posed algorithm that takes into account both the class frequency and the ontology tree

structure.

3.2 Choosing the best class from the set of candidates

The starting point for choosing the best class for each data source attribute is the set of

promising classes that the algorithm has built in the previous step. The goal of the next

step is to assign to each class in Table 2 a rating that takes into account both the class

frequency and the ontology tree structure. In the end, the class with the highest score is

used to annotate the service attribute. To explain why the tree structure is important,

consider the DBpedia sub-tree in Fig. 2. In that figure the sub-tree of the DBpedia on-

tology is depicted; it has been built by considering, for an easy explanation, the first ten

candidate classes of the attribute Artist in Table 2. If the algorithm annotates the Artist

attribute with the most frequent class, then the Agent class (14%) will be chosen. How-

ever, by looking inside the semantics and the properties that characterize this class, it

is evident that the Agent class is too general for the concept of the musical artist of the

SongKick Artist attribute. We need to choose a more specific class. There are two as-

pects to consider, in order to annotate data sources with the best classes: the class cov-

erage and the number of properties. The class coverage is the percentage of retrieved

DBpedia instances covered by each class (node percentages in Fig. 2) and it is calcu-

lated as sum of class percentage with all its sub-class percentages. This value is higher

in the ontology top level classes and vice versa, because each class also cover the sub-

class instances. On the other hand, the more specific is the class, the more properties

the user can choose when creating the polymorphic data source. For this reason, the

proposed algorithm tries to find a trade-off between the class coverage and the number

of properties.

Fig. 2. Sub-tree of the DBpedia ontology built by using the SongKick artist attributes. For each

node, the percentage indicates the class coverage

In order to take into account these aspects, the x-value is introduced. It is an index

that quantifies the semantic similarity between a class and an attribute considering both

the frequency and the ontology structure. In particular, to consider the ontology struc-

ture, the algorithm starts by generating all the combinations of the sub-trees built with

the classes in the list of candidates. The length of these groups ranges from 2 up N

(where N is the number of candidate classes of an attribute). For each class in these

sub-trees, the algorithm calculates the x-value. At the end of the computation, each

class has many x-values, but only the highest value of each class is considered for the

final ranking. The generation of these groups is performed to explore all possible paths

in the ontology tree, as also performed in [11]. In particular, when the algorithm gen-

erates all sub-trees, new classes could be added to the candidate list. For example, let

us consider the Fig. 2 and suppose that the MusicalWork class is not generated in the

candidate list of Table 2. During the generation of all sub-trees, when the Single and

Album classes are used to create a sub-tree, also MusicalWork is considered because it

is their common ancestor. Thus, MusicalWork is added in the candidate list and its x-

value is calculated. Choosing the MusicalWork, or an ancestor in general, the coverage

could be higher than its sub-class coverage, maintaining a good number of properties

that describe the semantics of the considered data source attribute.

The formula of an x-value that estimates the power of a class into each sub-tree is:

𝑥 − 𝑣𝑎𝑙𝑢𝑒 = (𝑐𝑙𝑎𝑠𝑠𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑅𝑎𝑡𝑖𝑜 + 𝑝𝑎𝑟𝑒𝑛𝑡𝑃𝑜𝑤𝑒𝑟 + 𝑛𝑜𝑑𝑒𝑃𝑜𝑤𝑒𝑟)%𝑐𝑙𝑎𝑠𝑠.

Let us analyse in detail each component. The first one is classAncestorRatio.

𝑐𝑙𝑎𝑠𝑠𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑅𝑎𝑡𝑖𝑜 =
%𝑐𝑙𝑎𝑠𝑠 ∗ 𝑛𝐿𝑒𝑣𝑒𝑙𝑆𝑐𝑜𝑟𝑒

%𝑐𝑜𝑚𝑚𝑜𝑛𝐹𝑎𝑡ℎ𝑒𝑟 ∗ 𝑛𝐿𝑒𝑣𝑒𝑙𝑆𝑐𝑜𝑟𝑒

This value takes into account the coverage of the current class with respect to the

coverage of the first common ancestor in the sub-tree. To penalize classes in the higher

levels (such as the ancestors), the numerator and denominator are multiplied by the

nLevelScore, a number that ranges from 1 to 100 and it is calculated as:

𝑛𝐿𝑒𝑣𝑒𝑙𝑆𝑐𝑜𝑟𝑒 = (100/𝑂𝑛𝑡𝑜𝑙𝑜𝑔𝑦𝐷𝑒𝑝𝑡ℎ) ∗ 𝑐𝑙𝑎𝑠𝑠𝐿𝑒𝑣𝑒𝑙

In this formula, the OntologyDepth indicates the maximum depth of the ontology (7

in DBpedia), while classLevel specifies the depth of the considered class. It is evident

that nLevelScore is high in deeper levels and low in higher levels. In this way, in the

classAncestorRatio, the classes at higher levels are penalized.

The second component in the x-value is the parentPower. It quantifies the impact of

the common ancestor with respect to all the classes at the same level.

𝑝𝑎𝑟𝑒𝑛𝑡𝑃𝑜𝑤𝑒𝑟 =
%𝑇𝑜𝑡𝑅𝑜𝑜𝑡

%𝑇𝑜𝑡𝑅𝑜𝑜𝑡𝐿𝑒𝑣𝑒𝑙
 𝑐𝑙𝑎𝑠𝑠𝑃𝑜𝑤𝑒𝑟 =

%𝑐𝑙𝑎𝑠𝑠

%𝑎𝑙𝑙𝐶𝑙𝑎𝑠𝑠𝑒𝑠

In this component, %TotRootLevel is the sum of the coverage rate of all classes at

the same level of the sub-tree root. The %TotRoot is the coverage rate of the sub-tree

root. This component is introduced in the x-value to solve the problem of the class

sparsity in a tree. Let us consider in the Fig. 2 the Work and Agent classes. When sub-

trees with Work or Agent as ancestors are generated, this component has a high value

in Agent sub-classes. In this way, the x-value rewards sub-classes in the Agent branch

instead of those in the Work branch.

The third component is the classPower, which indicates the weight of the considered

class in the sub-tree. In classPower, the %class is the percentage of the class considered

in the sub-tree and %allClasses is the sum of the percentage of all classes in the con-

sidered tree.

At the end of the generation of all trees and the calculation of the x-values, the list

of candidate classes is expanded with all the new ancestor classes of the generated sub-

tree. Each class has several ratings, one for each group in which it appears. The class

with the highest score is selected to annotate the service attributes.

3.3 Performance evaluation of the annotation algorithm

To the best of our knowledge, no datasets with data sources attributes exist annotated

with DBpedia class. Thus, to establish the performance of the algorithm, two experts

created and manually annotated a set of 7 services (for a total of 18 annotable attributes)

by using DBpedia classes. In fact, not all the services attributes can be annotated with

a DBpedia class (i.e. URL attributes). Furthermore, due to the nature of the algorithm,

the numerical attributes (ticket price, temperature, humidity, height, weight, etc.) can-

not be annotated because it is impossible to infer the classes from numerical values. As

described in the Future Work Section, this limit can be overcome by combining the

proposed approach with natural language processing of the attribute name [12, 13].

To evaluate the performance of the automatic annotation algorithm, a new metric

called Accuracy is introduced. First, a score has been associated with each attribute

comparing its automatic annotation to the manual one (AAA stands for Attribute Au-

tomatically Annotated; AMA stands for Attribute Manually Annotated). In particular:

 10 points if AAA = AMA;

 8 points if AAA is at the same level of AMA (not the same, but very similar

semantic);

 7 points if AAA is 1 level up/down from AMA as a sub-class or a super-class;

 5 points if AAA is 2 levels up/down from AMA as a sub-class or a super-class;

 0 points in all other cases.

The Accuracy of the overall automatic annotation is calculated as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝐴𝑖

𝑁
𝑖

∑ 𝑀𝐴𝑋𝑠𝑐𝑜𝑟𝑒𝑁
𝑖

In the Accuracy formula the numerator is the sum of the accuracy of all the attributes,

instead the denominator is the sum of the MAXscore that is the maximum accuracy that

an attribute can have (10 in our case). The final accuracy ranges from 0 to 100. The

Accuracy is calculated both for the annotation performed by associating the most fre-

quent classes in Table 2 (baseline) and for the annotation performed by associating the

classes with the proposed algorithm.

Table 3. Accuracy comparison between the baseline and the algorithm

Accuracy

Baseline 56%

Algorithm 91%

As shown in Table 3, it is evident how important it is to consider the ontology struc-

ture during the automatic annotation procedure. In fact, in the latter (91%) the accuracy

is clearly improved.

This metric is quite different with respect to the ones such as precision and recall

used for the service semantic annotations [13]. In fact, the classic precision and recall

consider true and false values, if the automatic annotation matches the manual one.

However, in our case, we can also consider as good annotations classes like super-

classes/subclasses, but penalizing them because they do not match exactly the manual

annotation. The penalizing factor has been empirically established.

4 Related work

The core of the entire paper is the new polymorphic data source, introduced in the com-

position platforms to overcome the problem of lack of data source. To build this type

of data source, the services available in composition platforms need to be enriched with

semantic annotations. To the best of our knowledge, no previous works have tried to

solve this problem with similar data sources. However, much effort has been dedicated

to enriching Web services with semantic annotations, as described in [10]. In general,

the goal of semantic annotations is to improve the mashup platforms with mechanisms

like service recommendation, to assist the users during composition [14] or service dis-

covery [15]. This is a hard problem because the Web APIs lack explicit and sufficient

semantic information. In fact, API providers usually offer details like input and output

parameters in the form of unstructured text in their Web page. A system that tries to

exploit this HTML information is SWEET that assists the user in manually annotating

services with hRESTS and MicroWSMO formats with Web page information [16].

However, the weakness of this approach is the heterogeneity of the provider Web pages,

the lack of information and the manual end user effort that limits the large-scale service

annotation.

To overcome the limits of manual methods, different semi-automatic approaches

have been proposed. For example, two different solutions reported in [12, 13] annotate

services with DBpedia classes and their attributes with DBpedia properties based on

syntactical matching and other natural language processing techniques. Although the

fact that these approaches seem promising, they still require the intervention of an ex-

pert to set-up the system by adding low-level APIs details [12] and, mostly, the presence

of WSDL service descriptors that are not available for all Web APIs and that still re-

quire a heavy manual effort.

In order to overcome the limitations identified in the literature, the annotation algo-

rithm proposed in this paper has been designed to be: 1) usable by laypeople (no exper-

tise is required to provide example queries), 2) fully automatic (except for the typing of

a set of queries) and 3) not constrained by the presence of an HTML or a WSDL service

description. It is also reusable, in order to annotate services with other ontology classes

(e.g., Freebase or Yago).

5 Conclusions and future work

This paper describes a polymorphic data source, a solution that aims to address an im-

portant limitation that affects the use of a composition platform in real contexts. In order

to build this new polymorphic data source, an annotation algorithm has been developed.

The initial results reveal that the algorithm creates good annotations that reflect a good

quality of the polymorphic data source.

Although the algorithm performance appears encouraging, the proposed algorithm

does not aim to solve ontology matching problems. It is only based on the literature and

is an ad-hoc solution for the specific problem. Thus, one aspect that could be addressed

in the future is the improvement of the algorithm by investigating techniques as, for

example, NLP approaches [12, 13], to improve the annotation accuracy and to annotate

non-annotable attributes (e.g., the numerical attributes). Finally, user studies are

planned to evaluate the benefits of a polymorphic data source.

Acknowledgments. This work is partially supported by the Italian Ministry of Univer-

sity and Research (MIUR) under grant PON 02_00563_3470993 "VINCENTE" and by

the Italian Ministry of Economic Development (MISE) under grant PON Industria

2015 MI01_00294 "LOGIN". We also thank the student Vincenzo Lucente for contrib-

uting to system implementation.

References

1. Cappiello C., Matera M., Picozzi M., Sprega G., Barbagallo D., and Francalanci C. (2011).

DashMash: A Mashup Environment for End User Development. In Web Engineering. Auer

S., Díaz O., and Papadopoulos G.A. (ed.), Vol. 6757, pp. 152-66. Springer. Berlin / Heidel-

berg.

2. Ardito C., Costabile M. F., Desolda G., Lanzilotti R., Matera M., Piccinno A., and Picozzi

M. (2014). User-Driven Visual Composition of Service-Based Interactive Spaces. In Jour-

nal of Visual Languages & Computing. 25, 4, 278-96.

3. Yahoo! Inc. YahooPipes. Retrived February 22 from http://pipes.yahoo.com/pipes/

4. Cappiello C., Daniel F., and Matera M. (2009). A Quality Model for Mashup Components.

In Web Engineering. Gaedke M., Grossniklaus M., and Díaz O. (ed.), Vol. 5648, pp. 236-

50. Springer Berlin Heidelberg.

5. Bizer C., Heath T., and Berners-Lee T. (2009). Linked data-the story so far. In International

journal on semantic web and information systems. 5, 3, 1-22.

6. Ardito C., Costabile M. F., Desolda G., Lanzilotti R., Matera M., and Picozzi M. (2014).

Visual Composition of Data Sources by End-Users. In Proceedings of the International

Working Conference on Advanced Visual Interfaces, Como, Italy. pp. 257-60.

7. Ardito C., Bottoni P., Costabile M. F., Desolda G., Matera M., and Picozzi M. (2014). Cre-

ation and Use of Service-based Distributed Interactive Workspaces. In Journal of Visual

Languages & Computing 25, 6, 717-26.

8. Hooi Y., Hassan M. F., and Shariff A. (2014). A Survey on Ontology Mapping Techniques.

In Advances in Computer Science and its Applications. Jeong H.Y., S. Obaidat M., Yen

N.Y., and Park J.J. (ed.), Vol. 279, pp. 829-36. Springer Berlin Heidelberg.

9. Shvaiko P. and Euzenat J. (2013). Ontology Matching: State of the Art and Future Chal-

lenges. In Knowledge and Data Engineering, IEEE Transactions on. 25, 1, 158-76.

10. Reeve L. and Han H. (2005). Survey of semantic annotation platforms. In Proceedings of

the 2005 ACM symposium on Applied computing, Santa Fe, New Mexico. pp. 1634-8.

11. Jain P., Hitzler P., Sheth A. P., Verma K., and Yeh P. Z. (2010). Ontology alignment for

linked open data. In Proceedings of the 9th international semantic web conference on The

semantic web - Volume Part I, Shanghai, China. pp. 402-17.

12. Saquicela V., Vilches-Blázquez L. M., and Corcho Ó. (2010). Semantic Annotation of

RESTful Services Using External Resources. In Current Trends in Web Engineering. Daniel

F. and Facca F. (ed.), Vol. 6385, pp. 266-76. Springer Berlin Heidelberg.

13. Zhang Z., Chen S., and Feng Z. (2013). Semantic Annotation for Web Services Based on

DBpedia. In Proceedings of the IEEE 7th International Symposium on Service Oriented Sys-

tem Engineering (SOSE), pp. 280-5.

14. Bianchini D., De Antonellis V., and Melchiori M. (2010). A recommendation system for

semantic mashup design. In Proceedings of the Workshop on Database and Expert Systems

Applications (DEXA), pp. 159-63.

15. Talantikite H. N., Aissani D., and Boudjlida N. (2009). Semantic annotations for web ser-

vices discovery and composition. In Computer Standards & Interfaces. 31, 6, 1108-17.

16. Maleshkova M., Kopecký J., and Pedrinaci C. (2009). Adapting SAWSDL for Semantic

Annotations of RESTful Services. In On the Move to Meaningful Internet Systems: OTM

2009 Workshops. Meersman R., Herrero P., and Dillon T. (ed.), Vol. 5872, pp. 917-26.

Springer Berlin Heidelberg.

http://pipes.yahoo.com/pipes/

