
12 commuNicaTioNS of The acm | SePteMber 2009 | voL. 52 | No. 9

The Communications Web site, http://cacm.acm.org,
features 13 bloggers in the BLoG@cacm community.
in each issue of Communications, we’ll publish excerpts
from selected posts, plus readers’ comments.

ers have never liked relational DBMSs
and want a non-relational model and
query facility. (This was the topic of my
last CACM blog, “DBMSs for Science
Applications: A Possible Solution.”)

If you are storing Resource Descrip-
tion Framework (RDF) data, which
is popular in the bio community and
elsewhere, then column stores are
very good at certain RDF workloads. In
addition, other ideas, such as RDF-3X,
will beat conventional DBMSs in other
situations. Lastly, native RDF engines
(e.g., Virtuoso, Sesame, and Jena) may
well gain traction. The point is that
something else will beat conventional
row stores in this market.

Text applications have never used
relational DBMSs. This was pointed
out to me most clearly by Eric Brewer
nearly 15 years ago in the early days of
Inktomi. He wanted to use a relational
DBMS to store the results of Web crawl-
ing, but found relational DBMSs to be
two orders of magnitude slower than
a home-brew system. All the major
Web-search engines use home-brew
text software to serve us search results.
None use relational DBMSs.

Even in XML, where the current ma-
jor vendors have spent a great deal of
energy extending their engines, it is
claimed that specialized engines, such
as Mark Logic or Tamino, run circles
around the major vendors, according
to a private communication by Dave
Kellogg.

In summary, one can leverage at
least the following ideas to get superior
performance:

A non-relational data model. If the

from michael
Stonebraker’s
“The end of a DBmS
era (might be upon us)”
Relational database
man age ment systems

(DBMSs) have been remarkably suc-
cessful in capturing the DBMS market-
place. To a first approximation they are
“the only game in town,” and the major
vendors (IBM, Oracle, and Microsoft)
enjoy an overwhelming market share.
They are selling “one size fits all”; i.e.,
a single relational engine appropriate
for all DBMS needs. Moreover, the code
line from all of the major vendors is
quite elderly, in all cases dating from
the 1980s. Hence, the major vendors sell
software that is a quarter century old,
and has been extended and morphed
to meet today’s needs. In my opinion,
these legacy systems are at the end of
their useful life. They deserve to be sent
to the “home for tired software.”

Here’s why.
If we examine the nontrivial-sized

DBMS markets, it turns out that cur-

rent relational DBMSs can be beaten
by approximately a factor of 50 in most
any market I can think of. What follows
are a few examples.

In the data warehouse market, a
column store beats a row store by ap-
proximately a factor of 50 on typical
business intelligence queries. The
reason is because column stores read
only the columns of interest to the
query and not all of them. In addition,
compression is more effective in a col-
umn store. Since the legacy systems
are all row stores, they are vulnerable
to competition from the newer col-
umn stores.

In the online transaction process-
ing (OLTP) market, a lightweight main
memory DBMS beats a row store by a
factor of 50. Leveraging main memory
and the fact that no DBMS application
will send a message to a human user
in the middle of a transaction allows
an OLTP DBMS to run transactions to
completion with no resource conten-
tion or locking overhead.

In the science DBMS market, us-

Saying Good-bye to
DBmSs, Designing
effective interfaces
Michael Stonebraker discusses the problems with relational database
management systems and possible solutions, and Jason Hong writes
about interfaces and usable privacy and security.

DOI:10.1145/1562164.1562169 http://cacm.acm.org/blogs/blog-cacm

blog@cacm

SePteMber 2009 | voL. 52 | No. 9 | commuNicaTioNS of The acm 13

user’s data is naturally something
other than tables and if simulat-
ing his natural data model on top of
tables is awkward, then chances are
that a native implementation of the
natural data model will significantly
outperform a conventional relational
DBMS. This is certainly true in scien-
tific data.

A different implementation of ta-
bles. If something other than a row store
accelerates the user’s queries, then a di-
rect implementation of the relational
model using non-row store technol-
ogy will run circles around a conven-
tional relational DBMS. This is true in
the data warehouse marketplace.

A different implementation of
transactions. Current row stores give
you a “one size fits all” implementation
of transactions. This can be radically
beaten if a user has lesser requirements
or if the system can take advantage of
workload-specific features. This is true
in the OLTP marketplace.

One of these characteristics is true
in every market I can think of. Hence,
in my opinion, the days of a “one size
fits all” monolithic DBMS are at an end.
The replacement will be a collection of
vertical market-specific engines, with
much higher performance.

You might ask, “What if I don’t care
about performance?” The answer:
Run one of the open source relation-
al DBMSs. They are mature, reliable,
and, best of all, free.

You might also ask, “I am dug in
deep with my current vendor(s). What
do I do?” The answer: Take some por-
tion of your DBMS budget and allocate
it to new solutions. Over time, you will
move onto better technology.

Reader’s comment
It is very true that relational DBMSs
are overhyped for not so valid reasons.
The current trends also showcase that
there are viable alternatives to relational
DBMSs, which can beat them at their own
game. Also, the emergence of distributed
key-value stores, such as Cassandra and
Voldemort, proves the efficiency and cost
effectiveness of their approaches.

Also, the recently concluded NoSQL
conference discussed at length how
distributed, non-relational databases
work, along with overview of the emerging
alternatives in this space.

Pavan Yara—

from Jason hong’s
“Designing effective
interfaces for usable
Privacy and Security”
I often cringe when I hear
highly technical engi-

neers talk about people.
I usually hear broad generalizations

tossed about, like “people are lazy,
that’s why they can’t use the system”
or “people don’t understand security.”
The worst is “people are just stupid.”

With this kind of attitude, it’s no
surprise there are so many complicated
user interfaces in the world, let alone
in privacy and security. Failing to try
to understand things from the user’s
point of view is the cardinal sin in user
interface design.

With this in mind, I thought it
would be good to shift focus in this
blog entry away from individual case
studies of usable privacy and security,
and look at the bigger picture of how
to design better user interfaces.

Now, how to craft an effective user
interface is a very involved topic that
one can study for years, and there are
lots of great Web sites and books out
there. Effective user interface design
combines our understanding of aes-
thetics, technology, and human behav-
ior to develop artifacts that are useful,
usable, and desirable for a specific tar-
get audience.

What makes usable privacy and
security different from designing
other interfaces is that privacy and
security are often secondary tasks.
People don’t go to an e-commerce
site explicitly wanting to protect
their credit cards and email address-
es; they go there to buy things. Secu-
rity and privacy are obvious things
they want while accomplishing their
main goal, in the same manner that
they want the Web site to also be fast
and usable.

Roughly, there are three broad strat-
egies for usable privacy and security
(note that these aren’t mutually exclu-
sive):

make the interface invisible ˲

make the interface more under- ˲

standable
train the users ˲

A good example of better security
by making the interface invisible is
Secure Sockets Layer. End users don’t
have to do anything special, and all

of their network traffic is transparent-
ly encrypted.

Oftentimes, we just need to make
the user interface more understand-
able to end users. This might be ac-
complished through better layout, sim-
plified task flows, better visualizations,
or more appropriate metaphors (why
do we sign digital documents using
keys, anyway?).

Finally, some user interfaces may
also require training the users. One
common misconception about user
interfaces is that they should be “intui-
tive” (a description that always raises
a red flag with me). If you’re a Star
Trek fan like I am, you might remem-
ber that famous scene in Star Trek IV
where Montgomery Scott, the ship’s
engineer, tries to use a Macintosh
computer. After attempting to talk to
the computer and getting no response,
he picks up the mouse and tries talk-
ing into it. Intuitive indeed.

Applications are always designed
for a specific context, for specific pur-
poses, and for a specific target audi-
ence. The best designs will empower
people and let them get started quick-
ly, while also providing a way for them
to get better.

As such, some applications will
require some level of training. The
training might range from a basic un-
derstanding of how to zoom in and out
on the iPhone (which Apple cleverly
trained people how to do, with their
television ads), all the way to learning
how to drive a car (something we actu-
ally start training our children to do
since birth, given how ingrained cars
are in society).

Now, this doesn’t mean that you
can get away with a disastrous user
interface and expect people to have to
train how to use it, but it also doesn’t
mean that all user interfaces should
be walk up and use either. You have
to balance ease-of-use with power and
flexibility for your specific audience and
your specific goals. As Silicon Valley
pioneer Doug Engelbart once noted, if
ease of use was all that mattered, we’d
all still be riding tricycles.

Michael Stonebraker is an adjunct professor at the
Massachusetts Institute of Technology. Jason hong is
an assistant professor at Carnegie Mellon University.

© 2009 ACM 0001-0782/09/0900 $10.00

