
Fisheye Menus

Benjamin B. Bederson
Human-Computer Interaction Lab

Institute for Advanced Computer Studies
Computer Science Department

University of Maryland, College Park, MD 20742
+1 301 405-2764

bederson@cs.umd.edu

ABSTRACT
We introduce “fisheye menus” which apply traditional
fisheye graphical visualization techniques to linear menus.
This provides for an efficient mechanism to select items
from long menus, which are becoming more common as
menus are used to select data items in, for example, e-
commerce applications. Fisheye menus dynamically
change the size of menu items to provide a focus area
around the mouse pointer. This makes it possible to
present the entire menu on a single screen without requiring
buttons, scrollbars, or hierarchies.

A pilot study with 10 users compared user preference of
fisheye menus with traditional pull-down menus that use
scrolling arrows, scrollbars, and hierarchies. Users
preferred the fisheye menus for browsing tasks, and
hierarchical menus for goal-directed tasks.

Keywords
Fisheye view, menu selection, widgets, information
visualization.

INTRODUCTION
The concept of a "fisheye" distortion in a computer
interface to present detailed information in context has
been around a long time. Spence & Apperley introduced
the idea in 1982 [20]. Furnas then discussed the cognitive
aspects of how people remember information [7]. Several
researchers then applied fisheye distortion to a broad
variety of applications [4, 11, 21]. Several variations of the
fisheye technique have been explored from graphical maps
[16] to space-scale diagrams [8] to 3D [15] and 2D tables
[13]. Some applications of fisheye distortion techniques
have been carefully evaluated, often finding a significant
advantage to fisheye views [5, 10, 17].

However, despite the careful investigation of fisheye view
distortion techniques, and their application to a broad set of
complex tasks, fisheye views have never been applied to

the mundane challenge of ordinary menus. This paper
applies standard fisheye techniques to menus in Graphical
User Interfaces with the goal of improving performance in
user's ability to select one item from a long list.

Selecting items from menus is another well-studied area,
and the trade-offs of menu design are well understood [9,
12]. Menu design has become quite standard with well-
grouped menu items in consistent locations using common
names. This is appropriate for carefully designed
applications where every element of the menus can be
chosen in advance.

Figure 1: A screen shot of the fisheye menu in use.
This shows 100 web sites taken from the most popular
list of PC Magazine.

However, with the introduction of the Web and e-
commerce applications, it is becoming increasingly
common to use menus for selecting data items, as opposed
to selecting operations. For example, menus are used to
select from a long list of fonts, to select one state out of 50,
to select one country out of 250, or to select a web site
from a list of favorites.

It was this last example that motivated the application of
fisheye views to menus. Managing ones favorite locations
on the web is an important application of web browsers, but
one study showed that most web browser users don't put
more than about 35 items in their favorite lists before
resorting to using hierarchies [1]. While hierarchies
certainly help to organize information, this study found that
while some people used hierarchies, many stopped adding
new favorites altogether. The user interface for managing
favorites may contribute to this. Since web browsers use
pull-down menus to store favorites, and since these menus
don't work very well for more than about 35 elements, it is
not surprising that people don't put more than that many
items in the menus before using hierarchies. Some
researchers have looked at alternative interfaces for
managing web favorites [14], but they have not yet made it
into commercial products. Also, those approaches are fine-
tuned to web favorite organization, and may not apply very
well to other menu selection tasks.

Selecting data items from menus is different than selecting
functions because the data items in the menu are likely to
change from use to use, and there are typically many more
data elements in a menu than there are in functional menus.
In addition, since the user is not as familiar with the menu,
it is more likely that they won't know the exact text of each
item. Thus, supporting browsing as well as searching is
important. The length of the menu is crucial in determining
usability. It takes a user a time proportional to the menu
length to move a pointer to an item on the menu (on
average) [6, 18]. However, the real problem comes with
menus that have more items than fit on the screen.
AlphaSliders are one approach for selecting textual items
from a long list in a small space [2]. However that
approach only displays one item at a time, and does not fit
into the pull-down menu metaphor.

The existing approaches to selecting from one of many
displayed items in a long list are limited. There are three
commonly used approaches which are to use scrolling
arrows at the top and bottom of the list, to use hierarchical
"cascading" menus to make the list smaller, or to use
scrollbars. Let us look at each of these approaches in more
detail.

Standard GUI toolkits today provide support for long pull-
down menus by adding small scrolling arrows to the top
and bottom of the list if the entire list doesn't fit on the
display. When the user clicks on those arrows, the list is
scrolled up or down. Each toolkit implements these arrows
differently, some having fast scrolling if you hold the arrow
down (Microsoft MFC), and some slow (Swing). Some

automatically scroll when the mouse is just placed over the
arrows without clicking (Internet Explorer). However, in
any case, the user is required to first move the mouse to the
arrow, and then scroll until the desired element becomes
visible. If the menu is scrolled too far, the mouse must be
moved to the arrow on the opposite side of the menu, and
the user must then scroll in the other direction.

A common alternative to long lists is to use hierarchical
"cascading" menus. This works by having the application
developer organize the menu elements into groups. Then,
one entry that represents each group is placed in the menu.
When the user selects that group element, the members of
the group are displayed in a second menu off to the side.
This approach solves the problem of physically navigating
a long list, but replaces it with a new problem of requiring
the user to know what group the desired element is in. If
the user knows the hierarchy structure well, then this
approach works. However, if the user does not know the
hierarchy structure well, then the user must look in each
group, which is potentially time consuming. Typical
applications with stable menu structures regularly use
hierarchical cascading menus because presumably the user
will rapidly learn where each element belongs. However, it
is very uncommon in practice to find hierarchical menus
that are used for organizing data driven menus.

Finally, the last common solution for managing long menus
is to use a scrollbar that controls the portion of the menu
that is visible. This seems like an excellent approach
because it gives fixed time access to menus of any length
unlike the more common scrolling arrows, which takes
time proportional to the menu length. However, while
scrollbars are commonly used in dialog boxes, they are
rarely if ever used in pull-down menus. Perhaps this is
because current toolkits do not provide this as a default
behavior, although it is possible to implement it with some
toolkits.

In addition to these visualization methods, nearly all
toolkits support keyboard shortcuts for selecting menu
items. There are often modeless shortcuts (such as Ctrl-C
for "Copy") that select a menu element throughout the
application, even when the menu is closed. In addition to
those shortcuts, the keyboard can be used to select items in
the menu when it is open. Developers can either specify
which key should apply to each item by specifying a
"mnemonic", or if it is left unspecified, the first character of
the item is used. Thus, in an alphabetically sorted list,
pressing any key will jump the cursor to the first item
starting with that letter. Pressing it again will move to the
next item starting with that letter, and so on.

These keyboard accelerators are very powerful as they
bypass some of the shortcomings of the mouse-based
interaction techniques just described. They give users
direct access to either the target element, or at least to the
general area if there is more than one element sharing the
mnemonic. However, despite their power, many users do
not use them at all. Some users are not aware of them, but

others are aware of them and choose not to use them
anyway. Perhaps this is because their hand is already on the
mouse and takes too long to reacquire the keyboard, or
perhaps they don't know the keyboard well enough to
justify searching for the right key. Or they may not know
the exact text and actually are browsing the menu. And
finally, some users may just not like using the keyboard
when interacting with menus. People that only use the
mouse for selecting menu items are likely to be the largest
beneficiaries of fisheye menus.

FISHEYE MENU DESIGN ISSUES
We offer a new solution to the problem of menus that have
more items than fit on the screen by using a fisheye view to
display the menu elements. In fisheye menus, all of the
elements are always displayed in a single window that is
completely visible, but the items near the cursor are
displayed at full size, and items further away from the
cursor are displayed at a smaller size. In addition, the
interline spacing between items is also increased in the
focus area, and decreased further away from the focus area.
In this manner, the entire list of items fits on a single
screen. The items are dynamically scaled so that as the
cursor moves, a "bubble" of readable items moves with the
cursor (Figure 1). A fisheye menu applet can be found at
http://www.cs.umd.edu/hcil/fisheyemenu.

The fisheye menu uses all the available screen space, and
will calculate a distortion function so that the menu items
always just fill the menu. There are two principal
parameters of the fisheye menu that the application
developer can control: maximum font size, and focus
length. As with traditional menus, the designer can specify
the font size, which for the fisheye menu translates in to the
maximum font size, since some elements are rendered
smaller. However, the designer can also specify the desired
focus length. This specifies the number of items that are
rendered at maximum size near the cursor.

The focus length parameter is important because it controls
the trade-off between the number of menu items at full size
versus the size that is used to render the smallest items.
The fisheye menu dynamically computes the distortion
function based on the available space and these input
parameters. So, if the focus length is set to a large number
(i.e., 20), then this will push the peripheral items to be very
small, and as the user moves the cursor, there will be a lot
of distortion. If, however, the focus length is set to a small
number (i.e., 5), then there will be more room for
peripheral items and they will all be a bit larger. Figure 2
shows this trade-off.

Alphabetic Index
A fundamental characteristic of the fisheye menu is that
many of the menu items are too small to read at any given
position. However, since it is common to organize menu
items alphabetically for data menus, we can encourage this
organization for fisheye menus without undue burden.
Then, users can use their alphabetic knowledge to move the
cursor to the area they expect the item to be, thus bringing

that portion of the menu into focus at which point they can
read the menu items and select the particular item they
want. This is similar to how people use telephone directory
books. Despite the fact that items are listed sequentially in
the phone book, people use their alphabetic knowledge to
jump to the portion of the phone book where they expect
the item they are looking for to be. They then see where
they actually are, and fine-tune their search.

This telephone book analogy guides the design. One of the
reasons people can find items in telephone books so
quickly is that telephone books have index information at
the top of every page specifying in a large clear font what
information is on that page. These indices allow users to
just look at the indices while looking for the right page, and
then look at the content when they have found the page
they are looking for. It has been shown that indexes can
decrease search time with lists [3].

We designed the fisheye menus to have an alphabetic index
with the goal of making it easier for users to target the
portion of the menu that contains the item they are looking
for. The alphabetic index appears on the left side of the
menu. Each letter of the alphabet for which there is room
is displayed in the specified maximum font size.

The index letters are positioned so that when the pointer is
moved to the same vertical position as an index letter, the
first item starting with that letter will be just under the
mouse pointer. This provides the user with the ability to
rapidly move to the general area of the list they are
targeting.

This is our second design of the index letters. The first
design always positioned the letters at the current position
of the first item starting with that letter. Thus, as the

Figure 2: The same menu of 100 items displayed with
varying focus lengths (7, 12, and 20). There is a fixed
maximum font size.

fisheye focus changed, the index letters would move
around, following the items. This turned out to be not only
distracting, but also useful. By the time a user moved the
pointer to the position an index letter was at, that index
letter would have moved (since the focus and thus item
positioning would have changed.) We quickly realized the
value of the index letters was to inform pointer motion, and
shifted to the current stable design described above. Figure
3 shows the fisheye menu at different focus points.

High-Resolution Selection (Focus Lock Mode)
One difficulty with the fisheye menu mechanism as
described so far is that small mouse movements result in a
change of fisheye focus. With traditional menus, the
mouse must move over the full height of a menu item to
change the focus to the next item. However, with fis heye
menus, the amount the mouse must move to go to the next
item is equal to the smallest font size in the menu. This is a
fundamental result of the fisheye algorithm since all of the
menu items must be selectable by pointer movement in the
fixed vertical space of the menu.

This is a significant liability because despite the fact that
the focused elements are large and plainly readable, they
are difficult to select. In fact, Fitt's law shows us that the
time to select an item is inversely proportional to the target
item's size. For example, if a fisheye menu item is
effectively 3 pixels high compared to a traditional 18 pixel
high item (12 pixel font and 6 pixel space), it will take 6
times longer to select the item.

We overcame this problem by offering a "focus lock" mode
to the fisheye menu. Users operate the menu as described
above until they get near the item of interest. They then

move the pointer to the right side of the menu, which locks
the focus on the item the cursor is over. Then, when users
move the pointer up and down, the focus stays fixed, but
individual menu elements can still be selected. The focus
region on the right side of the menu gets highlighted to
indicate that the menu is in focus lock mode.

Further, if the pointer is moved above or below the focus
region (staying on the right side of the menu), the focus
area is expanded. Eventually all of the menu items become
full-size and thus easy to select. But, of course, not all of
the items are visible anymore as the ends get pushed off the
screen as the focus area is expanded. Since the menu
layout is quite different in focus lock mode, the index
characters become inaccurate, and so they are faded out as
the focus area is expanded in focus lock mode.

If users decide to continue looking in a different portion of
the menu, moving the pointer back to the left side of the
menu turns off focus lock mode, and the menu returns to
regular behavior. This focus lock approach to high-
resolution selection within a fisheye view solves the Fitts’
law problem at the cost of a small mouse movement.

We considered several alternative approaches to entering
the focus lock mode. We first tried using the right button,
but gave that up as it seemed too unlikely that users would
discover it on their own – especially since it did not follow
the standard Windows model of pressing the right button
for a context -sensitive menu. And, of course, it would not
work at all for systems without a second mouse button. We
also considered using the speed of the mouse to determine
the focus mode, but that seemed to be too unpredictable by
users. Also, an earlier study of the AlphaSlider confirmed
this intuition [2].

Figure 3: The same menu displayed with the cursor at
three positions.

Figure 4: A fisheye menu in focus lock mode whose
focus area is being extended upwards

We ended up with the current design, which offers an
affordance for the focus lock feature. There is a subtly
shaded box on the right side of the menu that moves up and
down with the focus. This was intended to draw user’s
attention to the right side of the menu. In addition, the two
small arrows on the right side are intended to suggest to
users that they can move the pointer up and down in focus
lock mode. When the pointer is moved towards the arrows,
the focus area is extended, and the arrows move
accordingly. The users can thus discover that the focus can
be extended. Figure 4 shows the focus lock mode with the
focus area being extended upwards.
IMPLEMENTATION

The fisheye menu is a drop-in replacement for Java's
standard "JMenu" component in the Swing GUI toolkit.
This new widget, called FishEyeMenu, is written in Java 1,
and works for applications and applets. This means that
any Java code that currently uses traditional Swing menus
can switch to using the fisheye menus with a one-word
change by replacing “new JMenu()” with “new
FishEyeMenu()”1.

The standard approach to implementing fisheye distortion
techniques is to compute a "Degree of Interest" (DOI)
function for each element to be displayed. The DOI
function calculates whether to display an item or not, and it
calculates the item's size. Typical degree of interest
functions include both the distance of an item from the
focus point as well as the item's a priori importance [7].
Thus, certain landmark items may be shown at a large size
even though they are far from the focus point.

The fisheye menu uses a very simple DOI function that
only includes distance from the focus point, and does not
use a priori importance. A simple function that captures the
essence of the fisheye menu is shown in Figure 5. It keeps
several menu items near the focus point at the maximum
size, where the exact number is specifiable. Then, the
menu items get smaller, one pixel in font size at a time until
the minimum font size is reached at which point, all more
distant items stay at the minimum font size.

Using this DOI function, the fisheye menu calculates the
largest minimum size font that will result in a menu that fits
on the screen. If there are so many items in the menu, or if
there is so little available screen space that there is not
enough room for the menu, then the DOI function
parameters are adjusted so there is enough room. First, the
focus length is reduced. If there is still not enough room
when the focus length is set to 1, then the maximum font
size is reduced. Thus, the fisheye menu always does the
best it can in presenting a large number of large items in
the menu, given the constraints of available space,

1 Note that the online applet uses Java 2 to decrease the

portability proble ms associated with accessing Swing
from Java 1.

following the hints of the suggested maximum font and
focus length parameters.

Complexities
In practice, the DOI function is actually a little more
complex than just described for two reasons. The first
reason is that we want the menu items to be visually stable
outside of the focus area. That is, if the focus is on the first
half of the menu, it is important that the second half of the
menu doesn't move at all as the focus changes. The fisheye
menu is stable using the above DOI function when the
focus is not near one of the ends of the menu. However,
when it is near the ends of the menu, there is a surprising
side effect of the algorithm, which results in the entire
menu shifting.

Since we render each item based on the position of the item
before it, one item alone changing size will slide the entire
rest of the menu up or down. Moving the focus in the
middle of the menu doesn't cause a problem because for
every item that gets bigger, another items gets smaller by
the same amount. To understand the issue here, let us look
at the simplest case where the focus is on the first item in
the menu. In this case, there are no items before the focus
item to get rendered, and the items after the focus item get
smaller until the minimum size is reached. Compare this
with the focus being on the second item in the menu. Now,
one item before the focus is rendered at a large size while
the items after the focus get smaller in the same way.
Thus, more space is taken altogether, and the entire menu
shifts down a little bit. The entire menu continues to grow
as the focus moves down from the end until the distortion
no longer goes to the end of the menu and the menu
becomes stable.

Our solution is to increase the size of the focus area just
enough to account for the smaller number of focus items
when the focus point is near the menu end. This way, the
total amount of space used by the focus area is always
constant, and the entire menu remains visually stable.

Focus
length

Max font size

Min font size

Item Number

Item
Size

Figure 5: The basic Degree of Interest function used for
the fisheye menu.

The fisheye menu uses this modified DOI function to
calculate the required size of the popup menu. This leads
to the second reason that our DOI function is more
complex in practice. We use integer calculations since text
is only rendered in integer sizes, and so the popup menu
size can end up being substantially smaller than the
available space. We want to use as large a menu size as
possible since the bigger the menu is, the more items we
can render in a large enough font to read, and the more
usable the fisheye menu will be.

Once the minimum size font is calculated, a menu that uses
all the available screen space is created. Then the DOI
function is modified using the same technique that we used
to solve the first problem - the focus area is expanded until
the text fills up the full menu space.

One remaining issue has to do with the alphabetic index.
Since the index characters are always rendered at full size,
they would overlap each other when they are far from the
focus area, since the associated menu items at that point are
quite small. The fisheye menu avoids this overlapping
problem by simply not rendering indices that would
overlap with another. Thus, in the periphery, not every
index character is shown.

The fisheye menu is implemented by pre-calculating the
size of every item and the space between each item for each
focus position, and storing that information in look-up-
tables. This pre-calculation is necessary in order to
calculate the position of the index letters. This also
improves performance since there is very little calculation
during rendering. One final, but important optimization is
the use of region management. Since the fisheye menu is
visually stable, only the changing focus portion of the
menu changes as the pointer moves. Our implementation
keeps track of the area on the screen that changes, and only
renders that portion. Thus, for a menu of 200 items,
typically less than 30 items need to be rendered for each
mouse movement.

EVALUATION
We conducted a pilot study of fisheye menus comparing
user preference of them against the three menu mechanisms
commonly used today: arrow buttons to scroll up and
down, scrollbars, and hierarchies. The intent of this study
was to get a preliminary idea of whether fisheye menus had
potential. We did not expect that the results of this study
would provide a definitive understanding of whether
fisheye menus were faster, more appropriate, or preferable
for tasks. Rather, we hoped to get a rough idea of user’s
preferences that would let us know if our intuitions were
realistic, and to inform future evaluations.

We picked 10 users that were not from our lab, and were
not familiar with fisheye menus before the study. Five of
the subjects were computer science students with
programming experience, and five of the subjects were
administrative staff that work in our building, and did not
have programming experience. We felt that looking at
programmers vs. non-programmers was important because

fisheye menus are somewhat technical, and we sensed that
people with less technical experience may not feel
immediately comfortable with them. As it turned out, there
was a difference between these two classes of users which
will be reported in the Results section.

Seven of the subjects were female and three were male.
Five were in there 20’s, two were in their 30’s, two were in
their 40’s, and one was over 50. All but one reported using
computers more than 20 hours per week.

The test was entirely automated using a custom Java
program. The program requested demographic
information, and explained that the purpose of the test was
to get feedback on the four types of menus for selecting an
item from a list. The subjects were then instructed to try
out each of the menu types, spending as much time as they
liked. At that point, they were instructed to ask any
questions about how the menus worked (the test was
administered by the author of this paper.)

The four menu types were labeled ArrowBar, ScrollBar,
Hierarchy, and Fisheye. All menu items were ordered
alphabetically. The ArrowBar was implemented with
arrows at the top and bottom of the screen. When the
arrows were pressed, the list would scroll at a rate of 20
items per second. The ScrollBar was implemented with a
standard scrollbar on the right side of the menu that could
be used to scroll the menu. The Hierarchy was constructed
with one menu item for each letter of the alphabet. Menu
items were placed in cascading menus under the first letter
of the text of that item. Finally, the Fisheye menu was that
described in this paper. Each of these menus are available
for trial at the fisheye menu website.

Then, the subject was instructed to select three different
specific items from each menu. Each menu was populated
with 100 websites that were selected from the list of most
popular websites from PC magazine (plus, a few
universities were added.) The items that the subjects were
told to select were chosen from near the beginning, middle,
and end of each list. The subjects were also asked to
browse the lists for a website they would like to visit. No
feedback was given, nor was information logged as
whether to the subjects correctly selected the specified
item.

The subjects were asked to rate the menus. They were
asked to rate each menu using a 9 point Likert scale
according to seven characteristics taken from QUIS – the
Questionnaire for User Interface Satisfaction [19]. The
seven characteristics were:

• terrible – wonderful
• frustrating – satisfying
• difficult – easy
• slow – fast
• hard to learn – easy to learn
• boring – fun
• annoying – pleasant

Finally, the subjects were asked to rank the four menu
types in order of preference for goal-directed tasks and
browsing tasks. They were also offered the option of
typing in any comments they had about the four menu
types.

Results
The average subjective satisfaction of the four menu types
was recorded for all users, and separated by programmer
vs. non-programmer. For all users, on a scale from 1 – 9
(with 9 being most positive), Hierarchy was the favorite
(6.8), Fisheye (6.4) was rated slightly higher than Scrollbar
(6.2), and ArrowBar (4.9) was the lowest.

When split by programmer, an interesting difference
appears. The ratings of ArrowBar and ScrollBar did not
change very much, but Fisheye and Hierarchy did. For
programmers, Fisheye (7.0) and Hierarchy (6.9) were about
the same. For non-programmers, the spread between
Fisheye (5.8) and Hierarchy (6.8) substantially increased.

When looking at the individual questions, we see that the
subjects had widely differing opinions about Hierarchy vs.
Fisheye in different categories. Hierarchy was preferred
over Fisheye in the three categories of ‘frustrating –
satisfying’, ‘hard – easy’, and ‘hard-to-learn – easy-to-
learn’. However, Fisheye was preferred over Hierarchy in
the four categories of ‘terrible – wonderful’, ‘slow – fast’,
‘boring – fun’, and ‘annoying – pleasant’.

When asked to directly rank the four menu types in order of
preference, there was a difference for goal-directed and
browsing tasks (Figure 6). For goal-directed tasks,
ArrowBar and ScrollBar were clear losers with Hierarchy
just beating out Fisheye. For browsing tasks, ArrowBar
was at the bottom, ScrollBar and Hierarchy were about tied
in the middle, and Fisheye was the most preferred.
However, the large standard deviation of Fisheye shows
that there was a broader range of reaction. Some users
ranked it about the same as ScrollBar and Hierarchy, and
some users ranked it much higher.

All Users
Subjective Preference Rank

1

1.5

2

2.5

3

3.5

4

Goal-Directed Task Browsing Task

R
an

ki
n

g

ArrowBar
ScrollBar
Hierarchy
Fisheye

Figure 6: Rankings of four menu types by direct
comparison for goal-directed and browsing tasks.
Error bars mark 1 standard deviation.

When separated out by programmer vs. non-programmer,
there was a similar effect as with the satisfaction ratings.
Programmers preferred Fisheye to Hierarchy in all cases ,

with a small margin (0.2) for goal-directed tasks, and a big
margin (1.0) for browsing tasks. Non-programmers
preferred Hierarchy to Fisheye for goal-directed tasks by a
margin of 0.6 and they were tied for browsing tasks.

The subjects’ comments were informative and mirrored the
rating and ranking results. Two non-programmers
specifically said that they did not like fisheye at all. The
other eight subjects all liked fisheye, and frequently had
concerns about the difficulty of learning to use it.
However, they also expressed optimism that with more
training, it would become more enjoyable and perhaps
preferable. A few typical comments were:

“Fisheye was the most difficult to learn yet with
continued use may actually become the most useful.”

“ArrowBar and ScrollBar are boring but very easy to
use. I am used to it. Hierarchy and Fisheye are very
interesting.”

“Once one understands that one has to go to the
colored area in Fisheye it becomes easier. But if one
doesn’t know that it’s frustrating.”

Analysis
We learned several things by conducting this preliminary
study of fisheye menus. While the study contained a small
number of subjects and the results were not analyzed
statistically, there are some trends. The test was
administered without a description of what fisheye menus
were or how they worked. Instead, the subjects were told
to play with them for as long as they wanted and only then
could they ask questions.

By observing this initial exposure to fisheye menus, and by
responding to the subjects’ questions, it was clear that at
least in the minute or two that they tried them, most
subjects did not understand how to use the fisheye menu
fully. All of the subjects quickly discovered that moving
the mouse up and down on the left side of the menu
operated the basic fisheye functionality. However, several
were confused about the exact function of the alphabetic
index on the left side. Several users tried clicking on them
– which just selected the item that was currently
highlighted. After one or two tries with this, they then
realized that the index was just informative, and not
interactive.

A more important problem was that only a single subject
truly discovered how the “focus lock” mode on the right
side of the menu worked. Despite the visual feedback,
subjects were just not expecting to have different behavior
when the mouse pointer was on different sides of the menu.
Some subjects never moved the pointer to the right side and
so never discovered that behavior at all. Other subjects
moved the pointer to the right side of the menu accidentally
or erratically. They just noticed that the menu would
sometimes change behavior in an inconsistent manner.
They did not correlate the change in menu behavior with
the side of the menu that the pointer was over.

Once the subjects were done exploring the menus and
asked questions, the focus-lock mode was explained.
Interestingly enough, all 10 subjects completely understood
how it worked in just a few seconds of explanation. Thus,
the visual design of the menu clearly needs some work to
make the focus-lock mode more discoverable.

Another major lesson learned from these studies is that
subjects’ response varied widely. Looking at the average
results only tells part of the story. Two of the subjects did
not like the fisheye menus at all. It had nothing to do with
the difficulty they had to discover how they worked.
Rather they just didn’t like them. One of those users
reported that the small menu items made her feel badly
because she felt that her eye sight was poor.

On the other hand, several of the users were eager to start
using fisheye menus in their regular work immediately.
This bimodal preference indicates that fisheye menus, if
deployed in an application, should always be optional.
Some users are likely to prefer them, and some are likely
not to.

The last lesson we learned from this study is that
application designers should consider the use of scrollbar
and hierarchical menus instead of the traditional arrow
menus used by default by current operating systems. Or
better yet, let users set an option to specify how long menus
will be presented.

The ArrowBar menu was the clear loser in all cases.
Subjects felt it was boring, slow, and frustrating. Yet, this
is the most common type of long menu in commercial
systems. The ScrollBar menu, on the other hand, provided
a nice compromise for goal-directed and browsing tasks,
and was generally enjoyed by users. While the Hierarchy
menu was often preferred for goal-directed tasks, the same
menu will be used in different ways by different users.
Some users will know exactly what they want while some
will browse. So, the Hierarchy menu should be used
cautiously if at all, and only when it is clear that users
know exactly what they are looking for.

Expert Timing
We also performed a very simple test to see how fast an
expert could use each of the menu types. The author of this
paper selected an item from the middle of the menu from
each of the menus 10 times working as quickly as possible.
The fastest time was recorded. This was done for the 100
web sites, and also for a list of 266 countries.

For the 100 websites, the times were: ArrowBar (3.4 secs);
ScrollBar (2.2 secs); Hierarchy (1.5 secs); Fisheye (1.7
secs). For the 266 countries, the times were: ArrowBar
(8.8 secs); ScrollBar (2.6 secs); Hierarchy (2.1 secs);
Fisheye (2.3 secs).

These timing results match closely with the subjective
preferences for goal-directed tasks, and so suggest that
these data may reflect a broader trend than would be
indicated by so few subjects.

CONCLUSION
Selecting an item from a list is an important and frequent
task. We have presented here fisheye menus, a new
mechanism that supports this kind of selection. Based on
our preliminary evaluation, we believe that this approach is
promising. It clearly is not for all users, but just as clearly,
it is preferred by many users, so at this point we
recommend considering fisheye menus for optional use
where selection from a long list is required.

We plan on continuing the investigation of fisheye menus
by conducting a controlled empirical evaluation, including
analysis of the speed users can select items with the
different menu types. We also will consider other menu
types such as matrix or multi-column layouts, and will look
at other factors such as the number of items in the menu.

ACKNOWLEDGEMENTS
I appreciate the thoughtful comments of the members of the
Human-Computer Interaction Lab who helped me fine-tune
the details of the fisheye menus. In particular, I thank
Harry Hochheiser who suggested the alphabetic index, and
the subjects who volunteered their time to give me valuable
feedback.

REFERENCES
1. Abrams, D., Baecker, R., & Chignell, M. (1998).

Information Archiving With Bookmarks: Personal
Web Space Construction and Organization. In
Proceedings of Human Factors in Computing
Systems (CHI 98) ACM Press, pp. 41-48.

2. Ahlberg, C., & Shneiderman, B. (1994). The
AlphaSlider: A Compact and Rapid Selector. In
Proceedings of Human Factors in Computing
Systems (CHI 94) ACM Press, pp. 365-371.

3. Beck, D., & Elkerton, J. (1989). Development and
Evaluation of Direct Manipulation Lists. SIGCHI
Bulletin, 20(3), pp. 72-78.

4. Dill, J., Bartram, L., Ho, A., & Henigman, F. (1994).
A Continuously Variable Zoom for Navigating
Large Hierarchical Networks. In Proceedings of
IEEE International Conference on Systems, Man
and Cybernetics IEEE, pp. 386-390.

5. Donskoy, M., & Kaptelinin, V. (1997). Window
Navigation With and Without Animation: A
Comparison of Scroll Bars, Zoom, and Fisheye
View. In Proceedings of Extended Abstracts of
Human Factors in Computing Systems (CHI 97)
ACM Press, pp. 279-280.

6. Fitts, P. M. (1954). The Information Capacity of the
Human Motor System in Controlling the Amplitude
of Movement. Journal of Experimental Psychology,
47, pp. 381-391.

7. Furnas, G. W. (1986). Generalized Fisheye Views.
In Proceedings of Human Factors in Computing
Systems (CHI 86) ACM Press, pp. 16-23.

8. Furnas, G. W., & Bederson, B. B. (1995). Space-
Scale Diagrams: Understanding Multiscale
Interfaces. In Proceedings of Human Factors in
Computing Systems (CHI 95) ACM Press, pp. 234-
241.

9. Hochheiser, H., & Shneiderman, B. (2000).
Performance Benefits of Simultaneous Over
Sequential Menus As Task Complexity Increases.
International Journal of Human-Computer
Interaction, (in press).

10. Hollands, J. G., Carey, T. T., Matthews, M. L., &
McCann, C. A. (1989). Presenting a Graphical
Network: A Comparison of Performance Using
Fisheye and Scrolling Views. (Third International
Conference on Human-Computer Interaction)
Elsevier Science Publishers, pp. 313-320.

11. Mitta, D., & Gunning, D. (1993). Simplifying
Graphics-Based Data: Applying the Fisheye Lens
Viewing Strategy. Behaviour & Information
Technology, 12(1), pp. 1-16.

12. Norman, K. (1991). The Psychology of Menu
Selection: Designing Cognitive Control at the
Human/Computer Interface. Ablex Publishing
Corp.

13. Rao, R., & Card, S. K. (1994). The Table Lens:
Merging Graphical and Symbolic Representations in
an Interactive Focus+Context Visualization for
Tabular Information. In Proceedings of Human
Factors in Computing Systems (CHI 94) ACM
Press, pp. 318-322.

14. Robertson, G., Czerwinski, M., Larson, K., Robbins,
D. C., Thiel, D., & van Dantzich, M. (1998). Data
Mountain: Using Spatial Memory for Document
Management. In Proceedings of User Interface and

Software Technology (UIST 98) ACM Press, pp.
153-162.

15. Robertson, G. G., & Mackinlay, J. D. (1993). The
Document Lens. In Proceedings of User Interface
and Software Technology (UIST 93) ACM Press, pp.
101-108.

16. Sarkar, M., & Brown, M. H. (1992). Graphical
Fisheye Views of Graphs. In Proceedings of Human
Factors in Computing Systems (CHI 92) ACM
Press, pp. 83-91.

17. Schaffer, D., Zuo, Z., Bartram, L., Dill, J., Dubs, S.,
Greenberg, S., & Roseman, M. (1997). Comparing
Fisheye and Full-Zoom Techniques for Navigation
of Hierarchically Clustered Networks. In
Proceedings of Graphics Interface (GI 97) Canadian
Information Processing Society, pp. 87-96.

18. Sears, A., & Shneiderman, B. (1994). Split Menus:
Effectively Using Selection Frequency to Organize
Menus. ACM Transactions on Computer-Human
Interaction, 1(1), pp. 27-51.

19. Slaughter, L. A., Harper, B. D., & Norman, K. L.
(1994). Assessing the Equivalence of Paper and On-
Line Versions of the QUIS 5.5. In Proceedings of
2nd Annual Mid-Atlantic Human Factors
Conference pp. 87-91.

20. Spence, R., & Apperley, M. (1982). Data Base
Navigation: an Office Environment for the
Professional. Behaviour & Information Technology,
1(1), pp. 43-54.

21. Spenke, M., Beilken, C., & Berlage, T. (1996).
FOCUS: The Interactive Table for Product
Comparison and Selection. In Proceedings of User
Interface and Software Technology (UIST 96) ACM
Press, pp. 41-50.

