

A Fisheye Calendar Interface for PDAs:
Providing Overviews for Small Displays

Benjamin B. Bederson

Human-Computer Interaction Laboratory
Computer Science Department,

Institute for Advanced Computer Studies
Univ. of Maryland, College Park, MD 20742

bederson@cs.umd.edu
+1 (301) 405-2764

Mary P. Czerwinski, George G. Robertson
Microsoft Research

One Microsoft Way, Redmond WA 98052
{marycz; ggr}@microsoft.com

ABSTRACT
Calendar applications for small handheld devices such as
PDAs are growing in popularity. This led us to develop
FishCal, a novel calendar interface for PDAs. It supports
users in performing planning and analysis tasks by using a
fisheye representation of dates coupled with compact
overviews, user control over the visible time period, and
integrated search. This enables users to see overviews and
to easily navigate the calendar structure, and to discover
patterns and outliers.
FishCal was evaluated in a benchmark usability study
comparing it to Microsoft’s Pocket PC 2002™ calendar.
Eleven users performed complex tasks significantly faster
and completed them more often with FishCal. Task by task
user satisfaction data showed a significant advantage for
FishCal as well. A number of usability issues were
identified to aid in the iterative refinement of FishCal.

Keywords
Fisheye Views, Information Visualization, Calendar
Interfaces, PDAs, Animation, Graphics.

INTRODUCTION
More and more people carry small Personal Digital
Assistants (PDAs) with them to help manage day-to-day
information. While these devices can be helpful for
retrieving relevant information when it is needed, our
informal polling of colleagues tells us that they are less
helpful for planning and analysis tasks. In particular, we
have heard many people complain about existing
commercial calendar programs for PDAs.
This is not surprising since these devices have limited
screen space, forcing users to jump around through
multiple screens, making it harder to relate disparate pieces
of information together.

W
s
w
d
a
A
i
m
d
a
a
u
a
w
T
f
d
p
v
T
p
a
r
i

F
t
t
s
w

igure 1: The FishCal interface with the view configured
o show 12 weeks. The right view shows the result of
apping on March 6th which focuses on that day. All
creenshots in this paper use the appointments that
ere used in the study described in this paper.

e designed a new calendar interface for PDAs that would

upport planning and analysis tasks such as “picking a good
eekend this spring to go camping”, “scheduling my next
entist appointment”, or “finding all conflicting
ppointments in the next three months”.
s a secondary goal, we hoped to design a calendar

nterface that would scale down to smaller devices such as
obile phones, and up to larger devices such as desktop

isplays. This second goal is important because individuals
re likely to access their calendar information from these
nd other devices. Offering a single interface would give
sers a consistent user experience, and, eventually, the
bility to more readily switch between devices using
hichever one is readily accessible.
he FishCal design addresses these goals by using a

isheye distortion technique coupled with carefully
esigned visualizations and interactions appropriate for a
en-based device and small display (Figure 1). The fisheye
isualization lets users see detail in context.
he basic approach starts with an overview of a large time
eriod with a graphical representation of each day’s
ctivities. Tapping on any day expands the area
epresenting that day, and reveals the list of appointments
n context. Users may change focus days, zoom in further

for a full day view, search for appointments, and
reconfigure the viewable space.
This interface shows varying time span displays within the
same framework using animated transitions between view
changes, and thus, may improve users’ ability to maintain a
sense of where they are. This paper describes the interface
along with the results of a user study comparing FishCal to
the traditional Pocket PC calendar interface. Evidence
from this study supports our hypothesis.

Related Work
Fisheye distortion techniques, initially called bifocal
displays, were introduced by Spence and Apperly 20 years
ago [14]. At that time, the basic concept was to distort the
information space so focus items were enlarged while
peripheral items were shrunk. A few years later, Furnas
generalized this approach by suggesting a “degree-of-
interest” function [5]. This calculates the relevance of each
item in the information space, which is then used to
calculate the size and visibility of that item.
Fisheye distortion techniques have been applied to a
number of domains, from graphs [12] to trees [8] to menus
[3], among others. Their effectiveness has been mixed, but
in at least some cases, such as for hierarchically clustered
networks [13], fisheye interfaces have been shown to be
beneficial to users. The common theme has been that
fisheye views are appropriate when users need to see
details of some specific items in the context of a large
information space.
The idea of using fisheye distortion to view calendars is not
new. It was first suggested over ten years ago by Furnas
[6] where he described a textual Lisp-based calendar
program. We followed the basic approach Furnas created
at that time. A tabular display shows days in the calendar,
and clicking on individual days causes the amount of space
allocated to that day to be increased. Furnas’ calendar used
varying amounts of space to show different days, so that
the focus day was largest, and other days were sized in
inverse proportion to the distance from the focus day
(although days in the past were always tiny because the
assumption was that users were more interested in the
future.) This program, while impressive for its time, did
not support graphical representations of appointments,
searching, or full screen views, and did not have widgets to
control which and how many weeks to display. It was not
designed with small displays in mind. In addition, it was
not evaluated with users, and was not pursued past the
publication of the above-mentioned technical report.
While fisheye approaches have not otherwise been used to
display calendars, fisheye visualizations have been used
successfully to view and interact with tabular information –
which is quite relevant, since calendars are typically
viewed with tables. The best known example of this is
Table Lens, which presents an interface for numerical and
categorical tabular data [11]. This visualization approach
was designed for tables with many rows, but a modest
number of columns. It represents each row with a
horizontal bar whose length is proportional to the value of

the cell for numerical data, and whose position represents
categorical data. The height of each row is scaled to fit the
available space. Users may then focus on individual or
multiple cells (or rows or columns) by clicking and other
interactions. In addition, users can sort rows to help see
relationships within the data. While this approach is
somewhat similar to the present work in that it uses a
fisheye distortion to view tabular data, it is not directly
useful for calendar information as it really is designed for
spreadsheet style information that has one item per cell,
rather than the multiple and possibly conflicting
appointments of calendars. In addition, it does not support
searching or navigation that calendar users require.
Nevertheless, the acceptance of this technique (as
demonstrated by its successful commercialization [1])
gives hope that users will be able to understand and
navigate calendar information in a tabular format using a
fisheye view.
Researchers have also developed other techniques to
visualize and interact with calendar information. Plaisant
et al. were among the first to develop small visual
representations of calendar information [10]. Mackinlay et
al. developed a 3D “spiral calendar” visualization [9]. This
approach, while not suitable for small devices since it
displays several visual representations simultaneously, does
have a fisheye-like quality in that it displays detailed
appointment information with visual links back to larger
scale calendars. So, users can see what week an
appointment comes from, what month that week is in, what
year that month is in, etc.
Perhaps surprisingly, fisheye techniques have been rarely
used for interfaces for PDAs and other devices with small
displays. One use was by Staffan et al. who used “flip
zooming” to display web pages on a PDA [15]. This
consisted of presenting one medium size focus page and
several tiny pages that could be used for navigation.

FISHCAL
FishCal is the fisheye-based calendar interface we designed
for use on a PDA (Figure 1). It was designed and built at
the University of Maryland, and Microsoft Research then
joined the project to run the experiment described below.
As described in the related work section, much of the
groundwork for this design was laid by a range of earlier
work. So, while the individual features of FishCal
represent only variations of existing approaches, the
primary contribution here is in the integration of a host of
techniques to create a novel application that is both usable
and useful in an important domain. In addition, we are
benchmarking the design against existing calendar software
for small devices. We hope that if FishCal is successful, it
will illustrate how existing techniques can often be applied
in new ways to new domains, and in doing so, advance the
state of the art.
FishCal was built to target currently available devices
running the Microsoft Pocket PC operating system. These
devices are small enough to fit comfortably in a hand, have

high quality 240 x 320 pixel screens, and fast enough
processors to support modest animation.
Since FishCal was designed for a pen-based PDA, we have
been careful to design the interaction so that it requires
minimal text entry and simple interaction. The entire
interface can be accessed with just single taps, although
dragging offers some modest extra features – including
access to tool-tips and fast scrollbar usage.
This rest of this section describes the FishCal interface in
detail, including a description of its navigation capabilities,
the visualizations that represent calendar information at
different sizes, and how search capabilities are integrated
into the interface.

Navigation
A fundamental characteristic of FishCal is its ability to
support users in easily customizing their view of the
calendar. Most commercial calendar applications provide
mechanisms to directly switch between day, week, month,
and year views, and to change which range of dates are
visible with each view. However, the different views are
disconnected. One goal of FishCal was to offer the same
functionality in terms of a range of views, but to do so in an
integrated fashion. Using animation and fisheye distortion,
users can see the relationship between the range of dates
they are viewing and the previous view. As such, users
should not have to expend as much mental effort to manage
context and figure out “where they are”.
The basic organization of the display is tabular (Figure 1).
Each row represents one week, with seven columns
representing the days of the week. The number of visible
rows can be changed from one (which represents a single
week) to 52 (which represents an entire year).
The view can be changed through direct manipulation by
interacting with the calendar itself, by manipulating
widgets in the periphery of the display, or by using special
hardware button shortcuts. One of the challenges was to
make it extremely easy to configure the view. The final
design only uses interaction mechanisms that most users
are familiar with, including tapping on an item that they
want more information about, and manipulating familiar
buttons and widgets.
Direct Manipulation. FishCal was designed to take
advantage of user familiarity with clicking on hyperlinks to
find more detailed information about the thing they clicked
on. It allows users to tap anywhere on a day to focus on
that day, minimizing other days.
Within a focused day (Figure 1 right side), users can tap on
the background, or tap on the maximize button to zoom in
to a full day view. Or, users can tap on the minimize
button to go back to original view with no days focused.
Within the full day view (Figure 2 left side), users can tap
on the appointment background or the appointment’s
maximize button to view the appointment details. Tapping
on the day’s minimize button returns to the original view,
and tapping on the overlapping-windows button returns to
the focus day view.

W
s
T
v
P
w
w
s
u
v
m
a
s
A
c
c
t
T
m
w
t
T
d
u
m
H
i
u
P
b
W
“
v
o
o
t
d
f
f
f

F
v
s

igure 2: The FishCal interface zoomed in to a full day
iew (left) and then even further to see the details of a
pecific appointment (right).

ithin the full appointment view (Figure 2 right side),

crolling shows the full contents of the appointment.
apping on the minimize button returns to the full day
iew.
eripheral Widgets. The custom double-headed scrollbar
idget on the right side of the display controls how many
eeks are visible at a time. It acts like a traditional

crollbar, but the thumb has two additional buttons that are
sed to manually set the low and high values of the current
iew. The view dynamically changes as the scrollbar is
anipulated, but for efficiency, appointments within days

re only shown when the scrollbar is released. Figure 3
hows a range of views as controlled by the scrollbar.
nother way to configure the space is to manipulate

heckboxes on the top and left sides of the display. These
heckboxes specify whether space gets allocated fully to
he correlated set of items, or if those items are minimized.
he left side of the display has one checkbox for each
onth. The top side of the display has one checkbox for
eekdays and one checkbox for weekends. Figure 4 shows

he result of two different configurations of checkboxes.
here is also a “home” button in the top-left corner of the
isplay that resets all navigation settings to their default, so
sers can quickly return to the current day with a three
onth view.
ardware Buttons. On desktop computers, graphical user

nterfaces typically offer keyboard shortcuts so that expert
sers can quickly access commonly used functions. On
DAs, there is no keyboard, but there are special hardware
uttons that applications can use for a similar purpose.
hen FishCal runs on actual Pocket PC device, the

calendar” button will be used to cycle between the preset
iews of one day, one week, one month, three months, and
ne year. The “joystick” (a small 4-way rocker switch)
ffers motion in four directions, and we plan on using that
o move the “active” day which is indicated to the user by a
ark blue highlight. Pressing the center of the joystick
ocuses on that day (or maximizes it if it was already
ocused). The joystick can be used even when a day is
ocused or maximized.

distortion algorithms first allocate space, and then each cell
renders itself using a view that is appropriate to the
available space. The graphical views are scaled to fit the
available space, while the textual views use a constant-
sized font, and the text is clipped to fit in the available
space.
The four views available are:
• Tiny View. This shows a graphical representation of

the day’s appointments. It includes depictions of all-
day appointments with a white rectangle at the top of
the rectangle. It uses color to represent different
appointment types, and it depicts appointment conflicts
using multiple columns. The pen can be dragged
across appointments to show tool tips with textual
information about the appointment under the pen. In
large scale views, where each row is thinner than a
threshold, the black lines separating rows are removed
to make the display less “heavy” (Figure 3 bottom).

• Agenda View. This shows a textual list of
appointments in order by time. There are actually two
representations in this view. If there is a smaller
amount of space available, a smaller font is used, and
the appointment times are not listed. If there is more
space available, a larger font is used, and the
appointment times are listed (Figure 1 right).

F
a
c
c

Figure 3: A series of views as the bottom of the
scrollbar thumb is dragged downwards to shown in
succession from left to right and top to bottom, 1 week,
1 month, 3 month, 6 month, and 1 year views.

For a desktop version of FishCal, we use the keyboard to
offer these same shortcuts. The space bar changes between
presets, the arrow and enter keys change the active day and
zoom in. The escape key zooms out from focused and
maximized viewpoints.

Visual Representations
A crucial aspect of the design of FishCal is the visual
representation of the calendar for different configurations.
We decided to use a “semantic zooming” approach that we
developed from our prior work with Zoomable User
Interfaces [4]. Semantic zooming means that objects are
visually represented differently depending on how much
space is available to display them. Using this technique,
there are no explicit view modes. Rather, the fisheye

•

•

S
T
i
w
d
c

igure 4: The views resulting from unchecking the April
nd May checkboxes, and on the left, the weekend
heckbox is unchecked, and on the right, the weekday
heckbox is unchecked.
 Full Day View. This shows a traditional full day view
with a schedule of the entire day, and appointments
positioned at the appropriate times. It shows all-day
appointments and conflicting appointments, and uses
color in the same way as the tiny view (Figure 2 left).

 Appointment Detail. A traditional textbox widget with
scrollbars is used to show the detail of a particular
appointment (Figure 2 right).

earch
he last primary component of FishCal is search. Search is

mportant because it lets users identify patterns and outliers
ithin a large time span. When users search in FishCal, the
ays that contain an appointment that match the search
riteria are highlighted. The highlights are kept on while

users continue to operate FishCal normally so the space can
be explored to understand the results of the search.
In addition to highlighting the visible days within the
current view, “attribute mapped scrollbars” [7] show which
days are highlighted in both the past and the future
(Figure 5). The scrollbar shows indicators representing
which days are highlighted within and outside of the
current view.
While it is natural to support searching for arbitrary user-
entered text strings, that is somewhat problematic because
it is notoriously difficult and slow to enter text at all on
PDAs. So, while we support free text search, we also
support two search mechanisms that do not require text
entry: pre-built searches and searches based on existing
appointments.
Free Text Search. To search manually, users enter text in
the text box in the lower right corner of the display. Days
that contain matching appointments along with the
scrollbar marks are highlighted incrementally as users enter
text.
If all matching dates are outside the current view, FishCal
automatically scrolls to show the nearer hits. In addition,
the view is automatically expanded (to a maximum of 4
months) to show multiple hits if they are far apart.
A somewhat trickier issue is how to deal with search
strings that consist of multiple words. Should the search
consist of the conjunction or disjunction of the words, or
the actual search string? None of those approaches worked
for each of the experimental tasks. Instead, FishCal
operates like many current Web search engines, using a
simulated “vector” based search.[2; pp. 27-30].
Vector searches work by using a number of characteristics
of the search to rank the order in which the results are
shown. This results in an ordering that usually matches
user expectations. Exact string matches are typically listed
first, conjunctions (where all the words match) are listed
next, and disjunctions (where not all the words match) are
listed last.
FishCal is a little different since it does not present an
ordered list of search results, but instead highlights
whichever days match. Rather than ordering search results,
FishCal, just presents highly ranked search results. It
works by first performing an exact string match, and if
there are any results, they alone are shown. If there are no
results, then it searches for days with appointments that
match all the words in the search string, and highlights
those days. If there are still no matches, it then searches for
days with appointments that match any of the words in the
search string and highlights those. This combination of
search strategies mimics the main effect of vector searches,
and works well in practice.
Predefined Searches. Since it seems likely that many
searches by a particular user will be for the same thing, we
added support for predefined searches. The goal is to make
it even easier to search for commonly sought events, such
as travel, meetings, doctor appointments, or holidays.

A simple appro
which is suppor
systems. The p
do not annotate
Rather than forc
do, FishCal take
available – the
guarantees that
way every time
our colleagues
events with sim
vary significant
So we built su
search would ac
of search stri
Appointments”
appt”. While th
coded, our inten
or define their o
This approach
data, and it wor
that we discove
textual graphics
these are searc
because they sp
Nevertheless, th
having good qu
users are likely
be more consis
users to adapt to
better than the
annotation of ea
Existing Appoin
people to creat
appointment ha

Figure 5: FishC
“CHI” (colored
white printing
related meetin
associated wit
scrollbar show
highlighted, w
meetings.

al showing the results of searching for
 highlights are circled for black-and-

clarity). A few individual days with CHI-
gs are highlighted, along with the week
h the CHI conference. In addition, the
s two days in the future that are
hich have appointments for SIGCHI
ach is to search on appointment metadata
ted by Pocket PC as well as other calendar
roblem with this approach is that most users
each appointment with categories.
e users to do something they do not want to
s advantage of what information is already

appointment text itself. While there are no
a user will enter a similar event the same

, we have found through informal polling of
, that people often do represent similar

ilar textual descriptions – although they
ly from one user to another.
pport for predefined searches where each
tually look for a match within any of a set

ngs. For example, searching “Doctor
actually searches for “doctor”, “dr.”, or “dr
ese predefined searches are currently hard-
tion is for users to be able to modify them,
wn.
has been tested on the authors’ calendar

ks quite well except for a few idiosyncrasies
red. For instance, one of the authors uses
 such as “->” to indicate travel. Some of
hable as a text string, but some are not
an multiple lines.
is approach still appears practical. Since

ality predefined searches is so useful, some
to adapt the way they write appointments to
tent. While the general idea of requiring
 system requirements is undesirable, this is

 current solution which requires manual
ch appointment with categories.
tment Search. Since it is quite common for
e recurring appointments, where the same
ppens at regular time intervals, it seems

natural to hav
visualizing thos
We added one l
all appointment
works just by ta
with exactly m
yellow, just as
been typed into
We noticed, ho
appointments th
natural to also
those similar ap
of free text s
appointments
appointment, an
This is a simpl
users if they are
offers more info

Implementation
The implement
lines of C#. Th
is the layout a
calendar day.
number of days
checkbox states
The subtle part
set of configura
Specifically, the
size of unfocus
cells. That is, w
day to stay with
FishCal defines
for unfocused a
those ranges wh
The other subt
performance. T
rapidly, and to

structure had to be carefully designed. The primary things
taken into account which contribute to its performance are:

• Custom rendering loop. Rather than use a toolkit,
which might have been easier in some respects,
FishCal uses a custom data structure, rendering
loop, and “picking” implementation. This was
particularly appropriate since the basic data
structure is a table, and is easily handled as a two
dimensional array.

• Space vs. time tradeoff. Things were always
precomputed and stored, rather than being
computed on the fly. The most obvious place this
occurs is in the layout of the days.

• Render only what is needed during transitions.
However, some visual aspects, such as highlighted
days have to be shown during scrolling since users
sometimes look for that while scrolling.

Figure 6: The
“ASI Lunch M
highlighted in
appointment.
in orange whic

results of clicking on the appointment
eeting”. Every other Wednesday is
 yellow which shows a recurring

In addition, several days are highlighted
h match either “lunch” or “meeting”.

e a simple way to support finding and
e recurrences.
ast search feature which is the ability to find
s matching an existing appointment. This
pping on any appointment. All other days
atching appointments are highlighted in
if the text of the appointment subject had
the search box.
wever, that sometimes users had similar
at were not exact matches. It would be
support finding the relationships between
pointments. Based on the implementation

earching, we also search for days with
that partially match the specified
d we highlight those in orange (Figure 6).
e solution that can be readily ignored by
 only interested in the exact recurrence, but
rmation if desired.

ation of FishCal consists of about 5,000
e most complex part of the implementation
lgorithm used to allocate space for each
The layout algorithm takes as input the

 in a week, number of weeks displayed, the
, the focus day, and the size of the window.
of the layout algorithm relates to the large
tions of the space for which it must work.
re must be a balance between the minimum
ed cells and the maximum size of focused
e have found it makes most sense for each
in a range of sizes whenever possible. So,
 a preferred minimum and maximum size
nd focused cells, and allocates space within
enever possible.
le part of the FishCal implementation is
o make FishCal respond to user interaction

 animate transitions smoothly, the overall

All transitions in FishCal are animated with simple linear
interpolation that occurs over 250 milliseconds. We picked
such a short animation time because the visual changes are
quite small (usually not changing by more than a few
centimeters).
FishCal is implemented entirely in C#, and runs on
whatever platforms the Microsoft Common Language
Runtime (CLR) is available on. Currently, the CLR is
available on all desktop versions of Windows except
Windows 95. Microsoft has an early version of the CLR
available for Pocket PC (called the “Compact
Framework”), but at the time of this writing, it is too slow
to run FishCal well. While we were able to get FishCal
running on Pocket PC, the animations were so slow as to
make it unusable. Microsoft has promised a version of the
Compact Framework that will be substantially faster, and
should be available by the time this paper is published.
When FishCal does run reliably on Pocket PC, we plan on
making it available for download at
http://www.cs.umd.edu/hcil/fishcal. Until that time, we
have made a short video of FishCal available at that site.
All features described in this paper are fully implemented.
FishCal loads calendar data from a simple text file that is
exported from Microsoft Outlook. We also have an
experimental version of FishCal that is integrated with
Outlook through the Office Add-in architecture. It is
launched from a toolbar button, and loads appointment data
directly from Outlook.

BENCHMARK STUDY
We performed a benchmark usability study of FishCal
compared to the current shipping user interface of
Microsoft’s Pocket PC 2002™ calendar (Figure 7). The
goals of the study were to examine the initial design ideas
behind the fisheye calendar, in order to see if the user
interface design could be improved, and to compare its
overall usability against an existing product.
We gathered eleven knowledge workers (five females) who
were all experienced MS Windows and Office users, as
confirmed through an in-house validated recruiting

http://www.cs.umd.edu/hcil/fishcal

screener questionnaire. Participants were screened to be
between 25-50 years of age (average age of 39.2). In
addition, the participants fit some broad characteristics of
being target end users of personal digital assistants (PDA),
but were purposefully chosen to not own or use one at the
current time. We thought this aspect of the user group
would be especially interesting since for some reason these
users had avoided buying a PDA, and perhaps the
presentation of PDA information on a small screen was a
primary issue for them.
Brief (approximately 5 minutes) tutorials were provided to
participants prior to each set of tasks on each calendar. The
tutorials consisted of a one page sheet of instructions on
operating the interfaces, and the participants then tried each
of the described mechanisms. The tutorial focused on the
features and functions of each calendar that were necessary
for completing the experimental tasks. However, 2 minutes
were provided for the user to explore the calendar as he or
she saw fit prior to starting. The participants performed an
isomorphic set of 11 tasks using each calendar (example
tasks are listed below). The order of calendar use and task
set for the calendar were both counterbalanced in order to
minimize the effects of training, or the possibility of one
task set being slightly more difficult than the other.
Participants completed a series of calendar viewing and
planning tasks, introducing them to progressively more
complex questions as they interacted with each calendar.
The final task was the most complex, requiring the user to

determine the number of conflicts in their calendars over a
3 month period. All tasks were given a deadline of two
minutes to complete in order to keep the session under 1.5
hours (and because a two minute deadline seemed
reasonable for being able to discover information from
one’s PDA calendar.) Task times and completion, verbal
protocols, and user satisfaction and preference
questionnaire data were collected throughout the session.
Sessions lasted approximately one and one half hours.
One of the co-author’s calendars, seeded with several
artificial calendar events for the study, was utilized as the
target calendar. Ideally, we would have run both FishCal
and Pocket PC Calendar on a Pocket PC device. However,
as mentioned previously, the CLR is not yet fast enough on
the Pocket PC to run FishCal well. In order to minimize
extraneous differences in the study, we ran both calendars
on a PC using a mouse and keyboard. The Pocket PC
Calendar was run on a Pocket PC emulator and
synchronized using Microsoft ActiveSync prior to the
study, so that both calendars had the same content.
Participants were asked to carry out a variety of tasks, from
finding the dates of specific calendar events (such as visits
or trips), to determining how many Mondays a month
contained, to viewing all birthdays for the next 3 months.
Several tasks focused on finding free time on the calendar
in order to schedule events.
The user's display was a LCD set to 1024 x768 resolution
with 16-bit color, and each calendar occupied a 240 x 320
pixel window centered on the display (standard Pocket PC
resolution). All participants were run singly in a usability
lab, on a Dell Pentium 450 MHz computer running
Windows XP. A MS Natural keyboard and an MS
IntelliMouse were used as input devices, though the
“wheel” was not functional with the calendars.

Study Results
Task Times. Task times for one participant were
unavailable, as his session expired before he was able to get
to the 4th task using FishCal. A tape jam prevented us from
obtaining the task times for one other participant for the
Pocket PC, and both participants’ data had to be ignored for
the task time analysis. A 2 (calendar type) x 11 (Task)
repeated measures Analysis of Variance (RM-ANOVA)
was carried out on the completion times for the tasks.
Tasks were performed faster using FishCal (49 seconds
versus 55.8 seconds for the Pocket PC, on average), a
borderline significant result, F(1,8)=3.5, p=.08. There was
also a significant main effect of task, F(10,80)=12.9, p<.01,
and a significant calendar x task interaction, F(10,80)=2.05,
p=.04. Of particular interest was the fact that, as the tasks
became more complex (tasks 3, 5, 8 and 11), the FishCal
task time advantage grew. This result was primarily due to
the fact that FishCal allowed flexible views across time in a
user-defined manner. In addition, the integrated search
mechanism and its resultant views made finding particular
sets of events via keyword matching quite effective. These
results can be seen in Figure 8.

Figure 7: Screen shots of the Microsoft Pocket PC
Calendar program that was used in the study showing
day, week, month, and year views.

individual days were simply too small at that point to be

F
p

Completion Times across Tasks

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11

Task

Av
er

ag
e

Ti
m

e
(S

ec
on

ds
)

FishCal
Pocket PC

Figure 8: The time spent by study participants to
complete each task using the FishCal and standard
Pocket PC calendar interfaces.

Task Success. The participant who did not complete all of
the FishCal tasks was also removed from the Task Success
analysis. Tasks were completed successfully significantly
more often using FishCal (on average, a 88.2% success
rate, versus 76.3% for the Pocket PC), F(1,9)=37.1, p<.001.
In addition, there was a significant main effect of task,
F(10,90)=12.9, p<.001. The interaction was not
significant. These data are shown in Figure 9, where it
becomes clear that the more difficult and ambiguous tasks
(3, 5, 8 and 11) were successfully completed more often
with FishCal. This was primarily because the user had the
ability to get all the information across a particular time
span into one view in order to answer the question. The
Pocket PC user was confined to “pre-determined” views
(day, week, month and year views), making some of the
questions more difficult to answer. In addition, the “find”
capability is not integrated into the Calendar application on
the Pocket PC, so that if a retrieved calendar event needed
to be scrutinized in context more closely, this required
additional effort and short-term memory of the date to
navigate to in the calendar itself. For the most difficult task
(#11), no participant using the Pocket PC completed the
task successfully.
Satisfaction and Preference. Users completed “ease of
use” ratings on a scale of 1 to 5 (1=very difficult, 5=very
easy) after every task. FishCal was rated higher across a
majority of the tasks, especially the most difficult task
(task 11—how many conflicts are there for the next 3
months?). FishCal was rated higher than the Pocket PC in
terms of task by task satisfaction, on average, F(1, 9)=4.37,
p=.06, a borderline significant result. The average task by
task ratings are shown in Figure 10.
Usability Issues. Many usability issues were observed with
this initial version of FishCal, as well as the Pocket PC
calendar, and good design feedback was received from the
participants about how best to move toward redesign. For
the purposes of this paper, the focus will remain primarily
on those issues pertaining to FishCal.
Many users disliked the view of the calendar when more
than 6 months were shown at once, claiming that the

u
d
f
u
r
p
u
o
a
r
s
t
e
t
S
i
h
P
q
a
e
s
c
a
i

Percent Task Completion

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10 11

Task

Av
g.

 P
er

ce
nt

 C
om

pl
et

ed

FishCal
Pocket PC

igure 9: The percent of tasks completed by study
articipants for each task.
seful. In addition, users wanted to see all 24 hours of a
ay’s full view, but the prototype was limited in
unctionality to simply show a 9-5 view for this iteration of
ser testing. More importantly, a visualization of search
esults tried to show as many “hits” in the calendar as
ossible without making the view so crowded as to be
seless. If the result a user was looking for was scrolled
ut of view (into the future), there was no visual indicator
s such (the attribute mapped scrollbar that shows search
esults was added after the study was run.) Users voiced
trong concerns about the readability of text, and being able
o set their own default views according to their individual
yesight needs. Users also wanted more control about how
heir weeks were viewed (e.g., should the week start with
unday or Monday?). Finally, users wanted better visual

ndicators of conflicts for both calendars, e.g., red
ighlights and/or a “conflicts” filter.
articipants completed an overall user satisfaction
uestionnaire after completing each set of tasks, and again
t the end of the session. No significant differences
merged in this satisfaction data, though the Pocket PC was
lightly more preferred overall (6 out of 11 participants
hose the Pocket PC Calendar; one participant abstained
nd stated that she wanted features of both calendars in the
deal calendar; 4 participants chose FishCal). Most
Ease of Use Ratings per Task

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11

Task

Av
g.

 E
as

e
of

 U
se

 R
at

in
g

(1
=V

er
y

Di
ffi

cu
lt,

 5
=V

er
y

Ea
sy

)

FishCal
Pocket PC

Figure 10: The ease of use rating for each task by study
participants.

F
w
F

Overall User Satisfaction

0

1

2

3

4

5

6

7

Le
arn

ing

Eas
e of U

se

Anim
ati

on

Switc
hin

g View
s

Command
s

Disc
ove

ry

Stim
ula

tin
g

Contr
ol

Use
 D

ail
y?

Spe
ed

Attra
cti

ve
nes

s

Beh
av

ior

Calendar

A
ve

ra
ge

 R
at

in
g

(1
=D

is
ag

re
e,

 7
=A

gr
ee

)

FishCal
Pocket PC

Figure 11: Overall user satisfaction.

participants said that they would prefer a combination of
features from each of the two calendars during the post-
session debriefing. The most often cited reason for
choosing the Pocket PC calendar was the participants’
familiarity with the Outlook XP calendar, which is similar
in many ways. The overall satisfaction data is shown in
Figure 11.
In summary, FishCal performed quite well despite its
novelty and this being its first iteration of user testing. The
responsivity to direct user manipulation, the ability to
create custom views easily on the fly, its clear presentation
of conflicts, and integrated search utility were all design
innovations that participants thought would be valuable to
any calendar used daily for planning and reviewing one’s
schedule. The Pocket PC calendar was seen by participants
to be consistent with other MS calendar products, and this
was seen as a plus. Several participants wanted to see a
combination of the two calendars taking advantage of the
good features of both in a final product.

MONDRIAN BACKGROUNDS
One last thing we did with FishCal was to experiment with
making the display a little more fun. After visiting a
modern art museum recently, the first author of this paper
was inspired by several paintings he saw by Piet Mondrian
(1872 – 1944).
We wrote a “Mondrian” mode for FishCal that takes a
vectorized version of a Mondrian painting, maps it to the
cells and edges of the current FishCal layout. The result is a
fully functional Mondrian-style calendar interface. FishCal
behaves normally, and the background painting moves and
distorts as the user manipulates the calendar.
Admittedly, this is a distracting display that not many
people are likely to use during most of their interactions.
Nevertheless, we feel that as interface designers, it is
important to move past pure function, and to also consider
the form of our interfaces. While users are usually focused
on efficiency and productivity, this is not always true.
Sometimes, even the most serious of users have playful

m
s

F
T
t
a
m
s
F
w
N
a
f
a
u
c
M
h
m
F
t
c
W
b
s
a
s
i

C
W
f
f
t
o
a
b
i

igure 12: Two views of FishCal in “Mondrian” mode
here paintings by Piet Mondrian are mapped to the
ishCal display.

oments, and we want to encourage interface designers to

upport the full range of human activity and interests.

UTURE WORK
here are several areas of future work for FishCal. From a

echnical standpoint, we have to integrate FishCal into the
pplications and devices that people are already using to
ake it easier for them to switch to an unusual tool for

uch an important task.
rom a design standpoint, a number of usability issues that
ere found during the user study must be addressed.
aturally, there is also a long list of features that users have

sked for that must be looked into as well, such as support
or faster data entry. Understanding how these changes
ffect users, and keeping FishCal easy enough for novice
sers to feel comfortable with will be an ongoing and
rucial challenge.
ore studies must be run since it is likely that use of small

and-held devices with pens and touch-screens rather than
ice and keyboards will affect usage patterns.
inally, further design issues are likely to come up when

he FishCal interface is applied to smaller devices (such as
ell phones) and larger ones (such as desktop displays).

hile the basic paradigm scales nicely, there are likely to
e specific details that need to be changed for different
ized displays. Figure 13 shows what FishCal looks like on
 large display. While FishCal currently runs as a
tandalone application on the desktop, we have started
ntegrating it with Microsoft Outlook.

ONCLUSION
e are excited to have revived a useful application of

isheye technology. Given the encouraging results of our
irst user study, FishCal seems to be a viable competitor to
raditional calendar interfaces. However, since managing
ne’s calendar is so important, many users will be cautious
bout adopting non-traditional interfaces. Thus, one of the
iggest remaining challenges is to refine FishCal so that it
s appreciated by a broad spectrum of users.

[
[

[

[

[5] Furnas, G. W. (1986). Generalized Fisheye Views.
In Proceedings of Human Factors in Computing
Systems (CHI 86) ACM Press, pp. 16-23.

[6] Furnas, G. W. (1991). The Fisheye Calendar System.
Bellcore, Morristown, NJ.

[7] Hill, W., & Hollan, J. (1994). History-Enriched
Digital Objects: Prototypes and Policy Issues. The
Information Society, 10(2), pp. 139-145.

[8] Lamping, J., Rao, R., & Pirolli, P. (1995). A
Focus+Context Technique Based on Hyperbolic
Geometry for Visualizing Large Hierarchies. In
Proceedings of Human Factors in Computing
Systems (CHI 95) ACM Press, pp. 401-408.

[9] Mackinlay, J. D., Robertson, G. G., & DeLine, R.
(1994). Developing Calendar Visualizers for the
Information Visualizer. In Proceedings of User
Interface and Software Technology (UIST 94) ACM
Press, pp. 109-118.

[10] Plaisant, C., & Shneiderman, B. (1992). Scheduling

Figure 13: FishCal scaled up to 1024x768 pixels on a
desktop computer. There is room to display an entire
week with the full day representation, even while
showing six months of the calendar.

ACKNOWLEDGEMENTS
We greatly appreciate the comments of our colleagues
through the many revisions in the design of FishCal. We
also appreciate the efforts of Neema Moraveji who has
worked tirelessly to understand the intricacies of making
FishCal work with Microsoft Outlook on the desktop. He
has been among the first to create a complex .NET add-in
for Outlook using MAPI and other undocumented APIs,
running into a number of bugs along the way.
Finally, we thank Susan Wilhite for her help in running the
user study, and her help along with Ben Shneiderman,
Catherine Plaisant and Hilary Hutchinson for their
comments on drafts of this paper.
The portion of this work performed at the University of
Maryland was funded in part by a generous gift from
Microsoft Research.

REFERENCES
1] Inxight (2002). http://www.inxight.com.
2] Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern

Information Retrieval. New York: ACM Press.
3] Bederson, B. B. (2000). Fisheye Menus. UIST 2000,

ACM Symposium on User Interface Software and
Technology, CHI Letters, 2(2), pp. 217-225.

4] Bederson, B. B., Meyer, J., & Good, L. (2000). Jazz:
An Extensible Zoomable User Interface Graphics
Toolkit in Java. UIST 2000, ACM Symposium on
User Interface Software and Technology, CHI
Letters, 2(2), pp. 171-180.

Home Conrol Devices: Design Issues and Usability
Evaluation of Four Touchscreen Interfaces.
International Journal for Man-Machine Studies, 36,
pp. 375-393.

[11] Rao, R., & Card, S. K. (1994). The Table Lens:
Merging Graphical and Symbolic Representations in
an Interactive Focus+Context Visualization for
Tabular Information. In Proceedings of Human
Factors in Computing Systems (CHI 94) ACM
Press, pp. 318-322.

[12] Sarkar, M., & Brown, M. H. (1992). Graphical
Fisheye Views of Graphs. In Proceedings of Human
Factors in Computing Systems (CHI 92) ACM
Press, pp. 83-91.

[13] Schaffer, D., Zuo, Z., Bartram, L., Dill, J., Dubs, S.,
Greenberg, S., & Roseman, M. (1997). Comparing
Fisheye and Full-Zoom Techniques for Navigation
of Hierarchically Clustered Networks. In
Proceedings of Graphics Interface (GI 97) Canadian
Information Processing Society, pp. 87-96.

[14] Spence, R., & Apperley, M. (1982). Data Base
Navigation: an Office Environment for the
Professional. Behaviour & Information Technology,
1(1), pp. 43-54.

[15] Staffan, B., Holmquist, L. E., Redström, J., Bretan,
I., Danielsson, R., Karlgren, J., & Franzén, K.
(1999). WEST: A Web Browser for Small
Terminals. UIST 99, ACM Symposium on User
Interface Software and Technology, CHI Letters,
1(1), pp. 187-196.

	ABSTRACT
	Keywords

	INTRODUCTION
	Related Work

	FISHCAL
	Navigation
	Visual Representations
	Search
	Implementation

	BENCHMARK STUDY
	Study Results

	MONDRIAN BACKGROUNDS
	FUTURE WORK
	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

