
V. Pipek et al. (Eds.): IS-EUD 2009, LNCS 5435, pp. 70–85, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Supporting End Users to Be Co-designers of Their Tools

Maria Francesca Costabile1, Piero Mussio2,
Loredana Parasiliti Provenza2, and Antonio Piccinno1

1 Dipartimento di Informatica, Università di Bari, Bari, Italy
2 Dipartimento di Informatica e Comunicazione, Università di Milano, Milano, Italy

{costabile,piccinno}@di.uniba.it,
{mussio,parasiliti}@dico.unimi.it

Abstract. Nowadays very different people use computer systems for their daily
working activities, but also for fun and entertainment or only to satisfy their
information needs. Designers are doing their best to create computer systems
that work as end users expect, but it must be honestly admitted that they often
fail and end users have all rights to complain. In order to improve this situation
and create better systems, participatory approaches have been proposed, which
involve end users in the design and development process. However, this
solution is not without flaws, mainly because timing and ways of users'
participation are very critical. In this paper we discuss our approach to create
working systems, which is based on a star model of the software life cycle that
drives system design, development and evolution, since software design and
development is seen as an evolutive process, driven by end-users activities in
the real life. System development does not end with its first release; it is
experimented by its end users and further evolved on the basis of their
feedbacks. End users are truly engaged in the software life cycle as co-designers
and experimenters of the software tools they will use in various application
domains.

Keywords: Design Methodology, Star Life Cycle, Co-Evolution of Users and
Systems, End-User Development.

1 Introduction

Current development of Information and Communication Technology (ICT) leads to a
continuous growth of both computer systems and end-user population. Designers are
doing their best to create computer systems that work as end users expect, but it must
be admitted that they often fail [1]. Consequently, people are not satisfied with the
system they use and companies investing in ICT are unhappy because a lot of money
and resources are wasted.

In order to design successful interactive systems that meet users’ expectations and
improve their daily life, a designers’ major issue is: “How to define an interaction
language that allows end users to easily perform their activities”. This language must
be expressive enough to allow end users to formulate the solutions to their problems,
and yet not so rich to generate user disorientation. Thus, on one side there is a

 Supporting End Users to Be Co-designers of Their Tools 71

notation problem, while, on the other side there is a problem of system complexity.
As to notation, each element of the end user-system dialog must be expressed with
symbols the user can correctly interpret in her/his context and application domain. As
to complexity, the language should offer to its users all and only the tools they need to
perform their activities in a certain time and context.

Many questions arise. Who can define and evaluate notations understandable by
users? Who can identify the set of tools required in a certain context during a certain
activity? The answer is: the end users themselves. User involvement in the design
team is the key point of participatory design approaches [2]. However, this solution is
not without flaws, as clearly stated in [1]. Indeed, it is well known that end users are
unreliable when requested to explicitly explain their needs and envision system
functionalities, while they are very capable of detecting problems and difficulties
when using a software system [1], [3].

We consider end users as domain experts and have worked with them in the design
and development of systems in various application domains [4], [5]. Based on this
experience, over the past few years we have been developing the Software Shaping
Workshop (SSW) design methodology. We show in this paper that the SSW
methodology is able to truly engage users at times they can provide valuable
indications, as recommended in [1]. This goal is achieved by localizing the interface
to user culture and allowing users to interact directly with the system under
development. In this way, users are better engaged since they experiment the system
in their ‘sphere of work’ [1]. In other words, the SSW methodology adopts a star
model of the software life cycle, which anticipates the time when users test the system
in their work practice [6]. This methodology acknowledges software design as an
evolutive process, driven by user activities in the field. System development does not
end with its first release; it is experimented by its end users and further evolved on the
basis of their feedback. The system keeps evolving during time, since its use changes
users’ working practices, so that they require new functionalities and new tools [7].

End users are willing to be more involved in designing and developing their tools.
The boom of the Web 2.0 is pushing people not only to use software, but also to create
it. The Web already supports some kind of End-User Development activities, ranging
from simple parameter customization to modification and assembly of components,
creating simulations, games and web contents [8]. We will show in this paper how the
SSW methodology supports the creation of computer systems that evolve in time and
allow end users to be co-designers of their tools. In this way, it provides a contribution
towards computer systems that work successfully in the real life.

The paper is organized as follows. Section 2 discusses motivations of this work.
Sections 3 and 4 describe our approach to system design, development and evolution.
Section 5 reports a case study that illustrates the practical application of the described
concepts. Section 6 concludes the paper.

2 Background and Motivation

The diffusion of the World Wide Web as the platform for a wide variety of
applications raises many expectations about the possibilities offered by web-based
interactive systems. The interaction dimension creates new challenges for system
specification, design and implementation. First of all, the use of an interactive system

72 M.F. Costabile et al.

cause the working environment and organization to evolve, and force the system to
adapt to the evolved user, organization and environment (called co-evolution of users
and systems, see [5], [9]). Moreover, current techniques for software specification and
design, such as UML, are very useful for software engineers, but they are often
unfamiliar to users’ experience, language, and background so that they fail to provide
a good communication between application designers and users. This communication
gap is a reason why software systems are often poorly usable [10]. To overcome these
problems, software development methodologies aiming at participatory design [2] and
open-ended design [11] are invoked. However, designers must make sure that end
users are engaged at opportune moments, when they can provide useful suggestions.

A further reason that makes very difficult the creation of successful systems is the
diversity of end users: they have very different physical, cognitive and cultural
abilities, needs, interests and activities they want to perform with computer systems.
This diversity calls for general, adaptive systems [10]. The temptation is to develop
very general systems, which may easily become Turing Tar Pits in which “everything
is possible but nothing of interest is easy” [12]. The opposite temptation is to create
specialized systems, focused on the activity of a well-specified user – or a well
specified and restricted community of users linked by similar practices or similar
interests – working in a restricted context. In such systems Fischer warns about the
perils of this tendency: beware of the Turing Tar Pit inverse, i.e., overspecialized
systems that permit only a limited number of activities, which cannot be generalized
nor adapted and evolved [13]; they become a strict cage for end users by limiting their
strategies for achieving their goals. Indeed, domain-specific systems support certain
problem contexts but the ability to extend them is very limited; even minor
incremental changes are often impossible.

The design methodology we have developed in the last few years is suitable for
developing interactive systems that are not Turing Tar Pits or the inverse. The
methodology stems from our experience in participatory design of several
applications. However, our participatory approach is very different from the
traditional one [2] that recommends to involve end users in the design team just to
provide advice on their needs and expectations. They are more engaged in the overall
design and development process, being not only co-designers but also experimenters
of the evolving system.

Involving users in software project initiatives has been frequently indicated as a
critical factor in the creation of successful software [14]. It is well acknowledged that
it is good practice to involve users in designing the software applications with which
they will be working. This principle of participatory design is reflected in a wide
spectrum of methodologies in use today, such as agile programming.

Recent researches show that, because end users are busy with their work, they will
generally not be fully engaged in analyzing and evaluating new systems [1]. They
become committed only when the system impacts on their daily life, i.e. when the
system is released in the field. In the design and development phases, attempts to
increase user participation are helpful, but only partially effective. Our experience is
in line with this view: only when a new system impacts their daily practices, end users
are able to evaluate it and raise significant issues about its functionalities and
usability. This does not mean that involving end users in early phases of the design
process is of no value, because they certainly provide useful feedback; it suggests that

 Supporting End Users to Be Co-designers of Their Tools 73

we have to revise the different stages of system development. Wagner and Piccoli
recommend that post-implementation activities that try to solve the many problems
raised by end users when they start working with the final system must be
legitimized: they are not signs of system failure, but they are the only useful way of
facing with actual users’ needs and expectations [1].

One of the novelties of the SSW methodology is the proposal of modifying the
traditional software life cycle by considering software design as an evolutive process,
during which end users have the possibility of working in real settings with prototypes
that will be evolved on the basis of the results of this work. Thus, end users are not
required to envision since they experience what the end product will be and how it
will impact on their work practice, being able to provide very valuable feedback.

In today information and communication society, end users are no longer passive
consumers of computer tools, but they are shifting toward a more active role of
information and software artifacts producers [15]. This is also highlighted by
Shneiderman’s claim: “the old computing was about what computers could do; the
new computing is about what users can do” [16].

Our approach aims at developing software environments that support end users in
performing their activities of interest, but also allow them to tailor these environments
to better adapt them to their needs, and even to create or modify software artifacts.
The latter are defined activities of End-User Development (EUD), to which a lot of
attention is currently devoted by various researchers in Europe and all over the world
[17], [18], [19], [20].

EUD implies the active participation of end users in the software development
process. In this perspective, tasks that are traditionally performed by professional
software developers are transferred to the users, who need to be specifically supported
in performing these tasks. User participation in the software development process can
range from providing information about requirements, use cases and tasks, as required
in traditional participatory design, to creating/modifying software artefacts. Some EUD-
oriented techniques have already been adopted by software for the mass market such as
the adaptive menus in MS Word™ or some Programming by Example techniques in MS
Excel™. However, we are still quite far from their systematic adoption.

To permit EUD activities, we consider a two-phase process, the first phase being
designing the design environment (meta-design phase), the second one being
designing the applications by using the design environment. The two phases are not
clearly distinct, and are executed several times in an interleaved way, because the
design environments evolve both as a consequence of the progressive insights the
different stakeholders gain into the design process and as a consequence of the
feedbacks provided by end users working with the system in the field. This two-phase
process requires a shift in the design paradigm, which must move from user-centered
and participatory design to meta-design [4], [21].

3 A Strategy for Supporting Users’ Co-design

Meta-design refers to the design of environments that allow end users to be actively
involved in the continuous development, use and evolution of systems. In this
perspective, meta-design underlines a novel vision of system design, which is the
basis of our approach and considers end users as co-designers of the tools they will

74 M.F. Costabile et al.

use. All stakeholders of an interactive system, including end users, are ‘owners’ of a
part of the problem: software engineers know the technology, end users know the
application domain, Human-Computer Interaction (HCI) experts know human factors,
etc.; they must all contribute to system design by bringing their own expertise.
Stakeholders need different software environments, specific to their culture,
knowledge and abilities, through which they can contribute to shape software
artifacts. They should also exchange among themselves the results of these activities,
to converge toward a common design. Moreover, co-evolution of users and systems
forces all stakeholders to take part in a continuous evolution of the system [6], [20].
This can be carried out, on one hand, by end users, who can perform tailoring
activities to adapt the software environments they use to their evolved needs and
habits. On the other hand, end users should collaborate with all the other stakeholders
in the evolution of the interactive system rather than just in the original design.

Because of the diversity of end users, the challenge is to ensure the universal access
and universal usability of interactive systems. The slogan “one size fits all” cannot be
applied to the user interface; it is well known that people experience many difficulties
when they interact with an interface presenting a huge number of functionalities, being
overwhelmed with unnecessary interaction possibilities and often disoriented by them.
Our approach aims at providing different communities of users with software
environments that they may access and manipulate by exploiting their own system of
signs (notation) [22]. We recognize, with Iverson, that a notation developed by users
during years of experiences is a tool of thought [23]. However, we do not seek for a
universal notation, but acknowledge that each user community has developed a notation
that properly expresses the concepts and activities of that community.

The interaction language exploited in each software environment is derived from
the notation used by the community the environment is devoted to. This strategy has a
drawback: it makes difficult for the user to understand the improvements on the
system proposed by other stakeholders. To overcome this drawback and make fruitful
this clash among laguages (and cultures), the proposed approach exploits system
prototypes as boundary objects, supporting the communication among the different
stakeholders. Each stakeholder describes the improvement s/he wants to add to the
prototype by creating an updated executable prototype and possibly annotating it. The
others stakeholders receive the annotated prototype and evaluate the proposal by
reading annotations and concretely experimenting the prototype in their own
environment while performing their work activity, thus living concretely the
experience designed by the proposer.

The Software Shaping Workshop (SSW) methodology we have described in [4]
adopts a meta-design participatory approach that does not end with the release of the
software, but continues throughout the whole software life cycle. A team of experts,
including software engineers, HCI experts and domain experts, designs, implements
and evolves an application throughout its life cycle. The aim of this methodology is to
design interactive systems that are easily understood by their users because they
“speak” users’ languages. An interactive system is designed as a network of software
environments, called Software Shaping Workshops (SSW or briefly workshops), each
of them being either an environment through which end users perform their activities
or an environment through which stakeholders participate in the design of the whole
system, even at use time. An SSW is designed in analogy with an artisan or engineer

 Supporting End Users to Be Co-designers of Their Tools 75

workshop, the workroom where an expert finds all and only those tools necessary to
carry out her/his activities. The tools reflect the experts’ needs. For example, the
blacksmith’s hammer is suitable for heavy work and has different features than the
shoemaker’s hammer, suitable for more precise work. Following the analogy, each
SSW adopts a domain-oriented interaction language tailored to end-user culture, in
that it is shaped and defined by evolving the traditional end-user notations and system
of signs. In this sense, we refer to it as end-user language. Moreover, each SSW
provides all and only those tools that are required to perform the specific activities to
which the workshop is devoted. The data on which end users operate are thus
represented as elements of the language. Note that using the word ‘workshop’ to
denote the workroom we adopt the point of view of our users rather than the one of
computer scientists who denotes, by this word, a brief intensive meeting.

Fig. 1. The star life cycle model [1]

The SSWs are continually updated both because experience shows that the first
release of a system does not generally work properly [1] and because the use of a
system changes the work practice and determines user evolution (for more details on
user and system co-evolution see [5]). In other words, system design and development
do not end with its first release, since it evolves by following a star life cycle
represented in Fig. 1 [6]. This model includes the use and maintenance activities
performed during the working life of the system. The novelty of the SSW approach is
that the activities in the life cycle are performed by a team including users
representatives. System development can start from any point in the star (as shown by
the entry arrows in the model in Fig. 1), followed by any other stage (as shown by the
double arrows), always performing evaluation, which is at the center of the star. In
this way, the requirements, the design and the product gradually evolve, becoming
step by step well defined. The Use/Maintenance box refers to activities in which end

76 M.F. Costabile et al.

users are truly engaged; they practice in the field with the current version of the
system. They can enrich the system by creating new tools and, possibly, find out new
ways to use it; they also discover flaws in its use [1], [24]. All this is possible when
people use the system in real life, it cannot be imagined before. New iterations of
design and development are then necessary.

Results reached at each stage of the system life must be evaluated before passing to
the next stage. This is why evaluation is the star center. In the SSW methodology, end
users are always required to experiment the current version of the system under
development: they express their observations and suggestions, resulting from such
experiments. To this aim, they are allowed to annotate their own environment and to
make these annotations available to the design team [25]. More details about the
communications among workshops in the network, in order to evolve the system, are
in [4], [5], [26]. Analogously, Software Engineering (SE) experts and HCI experts
operate on prototypes and update them. The negotiation among the members of the
design team is based on the use of prototypes. A modification of the system is either
accepted and executed, or rejected by the team after each member has experienced it
and the different findings have been discussed [25].

The SSW architecture supports the methodology: a) each stakeholder operates
according to her/his mental model by using a SSW customized to her/his notations; b)
prototypes (as executable specifications) and annotations, by which each stakeholder
describes why and how a prototype must be updated, are exchanged among SSWs.

On the whole, the SSW methodology brings to a process of software design,
development and evolution that fosters the active participation of end users, involving
them when they can be more useful and productive. The process always starts with
defining a prototype, which is the seed of the whole process. This prototype can be an
existing system that must be improved, or a mock up that embodies the client
specification, if the process starts from scratch. Each stakeholder in the design team
experiments the prototype using it in her/his SSW, and finds out usability problems,
or unnecessary elements, or inadequacies of the system with respect to the work
organization. Each stakeholder can modify and/or annotate the prototype at hand to
make explicit her/his observations. From these experiments, several proposals emerge
as different improvements of the original prototype. Such different proposals are
concurrently developed, subjected to a continuous experimentation and negotiation
among the stakeholders, until an agreed proposal emerges. The interaction language,
i.e., the set of user actions, their notation and interaction style, is progressively
defined in the process, under the critical influence of the domain experts and all
involved end users. As to the notation, the lexicon (textual and graphical) and the
syntax are computerized versions of those used by the end users in their domain,
properly enriched and formalized to be executable by a computer. The formalization
process implies the careful design of the presentation elements of the user interface.

4 SSW Architecture as a Network of Customized Environments

Fig. 2 shows the SSW architecture, organized as a network of SSWs, that supports a
community of end users in performing their activities as well as the design team in
designing the seed of the workshops and in evolving them. The case study refers to

 Supporting End Users to Be Co-designers of Their Tools 77

the development of a web application to support the activities of a consortium of
small and medium-sized Italian companies operating in the confectionery field, called
CIDD (“Consorzio Italiano Distribuzione Dolciaria”). More details on the case study
are given in the next subsection.

SE

SalesManager HCI 2

1

3AssocRep1 AssocRepN

4

…CustN.1

…

CustN.K

high

low high

low

U
sa

bi
lit

y
fo

r
en

d
us

er
s

C
om

pu
ta

tio
na

lp
ow

er

Partner1 PartnerN…

Assoc1 AssocN…

…

…Cust1.1 Cust1.H…

To Use level

To Use level

MetaMeta--DesignDesign
LevelLevel

Design Design LevelLevel

UseUse LevelLevel

SE

SalesManager HCI 22

11

33AssocRep1 AssocRepN

4

…CustN.1

…

CustN.K

high

low

high

low

high

low high

low

high

low

U
sa

bi
lit

y
fo

r
en

d
us

er
s

C
om

pu
ta

tio
na

lp
ow

er

Partner1 PartnerN…

Assoc1 AssocN…

…

…Cust1.1 Cust1.H…

To Use level

To Use level

MetaMeta--DesignDesign
LevelLevel

Design Design LevelLevel

UseUse LevelLevel

Fig. 2. The SSW network for the case study

The SSW network of an interactive system is organized in three different levels
based on the different types of activities the workshops are devoted to: the use level
includes workshops that are used by end users to perform their tasks (called
application workshop); the design level includes workshops for designing and
adapting the application workshops in accordance with the evolving knowledge and
user needs (called system workshops); and the meta-design level includes the system
workshop for software engineers, which allows them to generate and maintain all the
workshops in the network.

The workshops in the architecture are of three types:

• SE workshop (“1” in Fig. 2): this workshop supports the software engineers in
designing and evolving all the other workshops in the architecture, according to the
requests of the different stakeholders. Interacting with SE workshop, software
engineers perform their activities using programming languages and other
development tools; they have high professional competence on software, low
competence on domain activities. Even if software engineers may be considered
end users when they interact with software environments, case tools, etc. created
by others, in this paper end users are the domain experts for whom the system is
developed and they do not have generally any expertise in computer science. The
interaction languages in the SE workshop are characterized by high computational
power (Turing Machine equivalent) but cannot in general be understood and
managed by end users, i.e., they have low usability with respect to end users.
Hence, the SE workshop would be a Turing Tar Pit for end users. In order to avoid
this, more usable environments are designed for end users even if with lower
computational power.

78 M.F. Costabile et al.

• Design workshops (“2” and “3” in Fig. 2): these workshops support the members
of the design team other than software engineers in designing and evolving the
application workshops. Such stakeholders have no (or little) competence in
computer science; some of them have competence on HCI design, so that they can
bring human factors in system design; other stakeholders have competence on
domain activities. These team members use specialized interaction languages that
have less computational power than the ones used by software engineers, in that
they permit a limited set of operations. However, they are more usable for end
users in that they can be correctly interpreted by end users.

• Application workshops (“4” in Fig. 2): these workshops are devoted to end users to
perform their activities in the real world. Interacting with application workshops,
end users perform their well-defined set of activities using domain-oriented
languages that reflect and empower their traditional notations. Such languages
permit the definition and execution of a limited set of computations, those of
interest for the end-user community and are characterized by a low computational
power. The characteristic structures of the alphabet elements used by an
application workshop are words, icons, symbols that are significant for end users
and can be correctly interpreted. Hence, the usability with respect to end users is
high. Due to these languages, the application workshops are in danger of becoming
the inverse of the Turing Tar Pit, where everything is easy and very little of interest
is possible. Anyhow, this danger is avoided thanks to the support to co-evolution
offered by our approach. Indeed, new functionalities can be provided to end users
when they need them.

5 A Case Study

To provide a concrete example of these concepts, let us describe how the SSW
methodology is being applied to the development of a web application supporting the
activities of CIDD consortium. The application provides the consortium companies
with several services such as price lists, discounts, order management, etc. and
permits some of the consortium stakeholders to exchange information and cooperate
through the Web.

After a field study, we identified the following stakeholders:

− the chairman, who is the official responsible for the consortium (e.g. he organizes
and chairs meetings of associated companies, signs the balance sheet, etc.);

− the sales manager, who manages all the consortium activities;
− the consortium secretary, who works closely with the sales manager;
− the partner companies, which hold agreements with the consortium to provide

goods to associated companies at special prices;
− the associated companies, which purchase products from the partner companies;
− the customers of associated companies.

A special role in the consortium is played by the sales manager, who needs to tailor
the software environments to be used by the associated companies and by the partner
companies, since he wants to decide about the services to provide to them. In turn, each
associated company needs to define the environments to be used by their customers.

 Supporting End Users to Be Co-designers of Their Tools 79

This is a typical case where various users want to co-design software environments and
tools, thus the meta-design approach of the SSW methodology can be successful.

In the studies carried out for requirement analysis, four types of end users have
been identified:

• power users: they are able to visualize, insert, modify and delete workshop contents,
define access rules and even design application workshops; the role of the power user
is played by the sales manager and his secretary, who works on his behalf;

• associated companies: their representatives can access contracts, catalogues,
promotions, competitions, make orders and design/tailor the application workshops
for their customers;

• registered guests: they are the customers of the associated companies and, through
their workshops, they can visualize specific contents;

• unregistered guests: any user who visualizes the portal home page when browsing
on the web.

The chairman is a political stakeholder, not interested in the portal use. Company
customers and partners are different communities of registered guests.

A system used by different user communities is often overgeneralized for some and
overspecialized for others. The SSW methodology avoids this: a system is generated
as network of workshops, each one specific for tasks and needs of a user community.

The seed of the current version of the CIDD portal was a first release of the
application developed as a static web site made of HTML pages that the CIDD
manager had commissioned to a company. The first user of that release was the
manager himself, who was not satisfied at all. The application lacked some
functionalities he considered necessary and presented various usability problems;
more importantly, his main complain was that he did not have the possibility of
shaping the web pages for the other end users (associated companies, partner
companies, etc.). In fact, one of the primary concerns of the manager is that he wants
to decide the services and the functionalities of the other end users. He is a demanding
user that wants to design software environments and tools used by himself and by the
other users of the consortium portal.

Taking into account all manager’s complains and requests, the new version of the
CIDD portal was developed with the SSW methodology. By considering the different
types of end users, the network architecture shown in Fig. 2 was defined. At the
design level there is a workshop for HCI experts, a workshop for the sales manager
and a number of workshops for representatives of associated companies
(“AssocRep1”, ..., “AssocRepN” in Fig. 2). The latter are used by representatives of
associate companies to create and modify the application workshops devoted to their
customers (“Cust1.1”,..., “Cust1.H”,.., “CustN.1”,..., “CustN.K”). At use level there
are application workshops used by associated companies (“Assoc1”,..., “AssocN”)
and application workshop used by partner companies (“Partner1”,..., “PartnerN”) for
their consortium activities.

Through their system workshop at the top level of the network, software engineers
design and develop a first release of the system workshops for different experts (in the
case study, sales manager and representatives of associated companies). By
interacting with their own system workshops, such experts, who know end

80 M.F. Costabile et al.

Fig. 3. The SalesManager workshop. The sales manager is generating services for associated
companies.

usersworking context and habits, design and develop the application workshops
tailored/specialized for different end-user communities (CIDD customers, associated
companies, partners). CIDD customers, associated companies and partners use their
workshops to carry out their tasks. When a user requires to perform new tasks not
supported by her/his specialized workshop, s/he annotates the problems and sends it
to corresponding domain expert, who evolves the workshop according to the new user
requirements, by collaborating, if necessary, with HCI experts to fix usability
problems. Whenever the domain expert system workshop is not so powerful to evolve
another workshop, s/he asks software engineers for the missing tools by sending them
an annotation. Software engineers thus evolve the workshop of the domain expert
who is then able to evolve the application workshop as required.

Some examples on how end users act as co-designers are provided in the
following. In the SalesManager workshop, the sales manager finds tools that allow
him to design the application workshops for each associated company and each
partner company, and the system workshops for associate company representatives
(“AssocRep1”,..., “AssocRepN” in Fig. 2). This workshop is shown in Fig. 3. Let us
suppose that the sales manager wants to design the system workshop to be used by the
representatives of an associated company, also providing it with some services. He
designs this workshop by direct manipulation. Specifically, he selects the company
from a drop-down list available in the central area of his workshop (the list is shown
in Fig. 3); he also selects a service he wants to provide from another drop-down list

 Supporting End Users to Be Co-designers of Their Tools 81

Fig. 4. A screen shot of the workshop for associated company representatives.

(available on the right of the previous one, not open in Fig. 3) and clicks on the
association button (the latter on the right in Fig. 3) to actually associate the service to
that company workshop. He does this for all services he wants to provide. As a result,
the workshop for the representatives of the selected company is created, shown in Fig.
4. Nine services are available and they are listed in the left panel of the workshop.
Fig. 4 actually shows a situation in which the user has selected a service from the left
panel and the central area shows the tools available to the user for using that service.
Such tools are provided through an interaction language that is suited to the culture
and skills of the users, who understand the meaning of all language elements and
easily work with them.

Similarly, the associated company’s representatives use their workshop to design
the workshops to be used by their customers (registered users). Referring again to
Fig. 4, here the user defines the product catalogues for a customer, with prices and
percentage of revenues, and how it can be visualized. The central area shows all
companies that provide products to the customer. For each company, the user
specifies in the appropriate field the percentage of revenues, and also decides whether
to show prices in the catalogue or not, by clicking on a radio button. Fig. 5 shows how
the catalogue is visualized in the customer workshop. Again, the user activity is
specified through direct manipulation of the elements of the interaction language

82 M.F. Costabile et al.

Fig. 5. A screenshot of the workshop for a customer

implemented in that workshop. It is worth noting that the workshop in Fig. 4 provides
its users with a communication area (the rectangular area at the bottom of Fig. 4)
through which representative of associated companies can exchange messages in the
network to foster the co-evolution process [5].

Through the developed system, each CCID user has available a workshop tailored to
her/his needs, which allows users to interact through a domain-oriented language
familiar to their culture and skills, thus avoiding the system to be a Turing Tar Pit. On
the other side, users do not perceive their workshops as the inverse of Turing Tar Pits,
which limit their activities, since the co-evolution process is supported throughout the
software life cycle, making possible to add new functionalities, as required by end users.

We agree that the design of such complex systems requires “more knowledge than
any one single person can possess, and the knowledge relevant to a problem is often
distributed and controversial” [27]. The SSW methodology allows a community of
stakeholders to create a system through their collaborative negotiations. This
negotiation is based on the exchange of messages which are of two types: executable
specifications of workshops; and annotations about these workshops. These
specifications are XML-based documents [28]. A stakeholder designing or updating a
workshop (the example of sales manager designing the workshop for an associated
company, depicted in Fig. 3) modifies the executable specification that, when

 Supporting End Users to Be Co-designers of Their Tools 83

interpreted by the browser, generates the new workshop. The user interface of this
new workshop is created by:

1. the browser interpreting the document resulting from the design process;
2. the user, who can set configuration parameters (the associated company

representative configures her/his workshop).

Therefore, the stakeholder designing another workshop performs a programming
activity that goes beyond configuration. By configuration we intend to set parameters
in order to select among functionalities available in that workshop.

In this case study, there is a variety of end users that are experts in a specific
domain, but not in computer science. They need to use the web application to perform
their work tasks, but they are not and do not want to become computer scientists.
They are permitted to shape and modify software artefacts through interaction
languages, whose elements (technical words, icon, etc.) are familiar to them. When
they modify and update the CIDD application, they actually program, but they are not
aware of this, also because they do not use conventional programs that would be too
unfamiliar to their culture and skills. They use a language through which they
compose new software artefacts by construction, similarly to children’s program
construction [29]. Working with these languages, CIDD users perceive that they are
simply carrying out their work activities and they are highly motivated. The simplicity
of the user interface is a strength of the SSW approach: “let user do simple things to
generate powerful results”. In other words, they are unwitting software developers, as
analysed in [15].

6 Conclusions

This paper has discussed an approach aimed at creating interactive systems that
address the needs of different communities of users, in which operations are easy to
perform and many interesting activities, including end-user development activities,
can be carried out. In this way, it is possible to avoid that the systems are perceived by
their users as Turing Tar Pit in which "everything is possible but nothing of interest is
easy". The opposite temptation is also avoided, namely the creation of overspecialized
systems, in which operations are easy to perform but only specific activities, which
cannot be generalized nor adapted and evolved, are possible; these systems are
perceived as the inverse of Turing Tar Pits, i.e. a strict cage that limits the activities of
their users.

The approach requires that an interactive system is designed as a network of
software environments, called Software Shaping Workshops, through which the
different stakeholders involved in system design, including end-users’ representatives,
are able to collaborate in the design and the evolution of the network of workshops
and to carry out activities of interest in their application domain.

The SSW methodology goes beyond the traditional participatory design that has
been in practice for the last two decades [2]. End users are not only involved in the
design phase to provide advice on their needs and expectations, they are truly engaged
in the whole process having the possibility of working in real settings with prototypes
that will be evolved on the basis of their feedback. The overall software life cycle is

84 M.F. Costabile et al.

revised. System development does not end with its first release; it is used by people in
their work practice and continuously evolved to comply with further users’ needs,
organization requirements and/or novel technology.

The concepts are explained through examples taken from a case study relative to
the development of a web application to support the activities of a consortium of
small and medium-sized Italian companies, which operate in the confectionery field.

Acknowledgments

This work was supported by the Italian MIUR and by EU and Regione Puglia under
grant DIPIS. We thank the CIDD consortium and Nicola Claudio Cellamare for their
collaboration in the development of the CIDD application.

References

1. Wagner, E.L., Piccoli, G.: Moving Beyond User Participation to Achieve Successful Is
Design. Commun. ACM 50, 51–55 (2007)

2. Schuler, D., Namioka, A.: Participatory Design: Principles and Practices. Lawrence
Erlbaum Associates, Inc., Mahwah (1993)

3. Mayhew, D.J.: The Usability Engineering Lifecycle: A Practitioner’s Handbook for User
Interface Design. Morgan Kaufmann Publishers Inc., San Francisco (1999)

4. Costabile, M.F., Fogli, D., Mussio, P., Piccinno, A.: Visual Interactive Systems for End-
User Development: A Model-Based Design Methodology. IEEE Transactions on System
Man and Cybernetics Part A-Systems and Humans 37, 1029–1046 (2007)

5. Costabile, M.F., Fogli, D., Marcante, A., Piccinno, A.: Supporting Interaction and Co-
Evolution of Users and Systems. In: International Conference on Advanced Visual
Interface, pp. 143–150. ACM Press, Venice (2006)

6. Bianchi, A., Bottoni, P., Mussio, P.: Issues in Design and Implementation of Multimedia
Software Systems. In: IEEE International Conference on Multimedia Computing and
Systems (ICMCS 1999), pp. 91–96. IEEE Computer Society, Los Alamitos (1999)

7. Nielsen, J.: Usability Engineering. Academic Press, San Diego (1993)
8. Fogli, D., Colosio, S., Sacco, M.: Managing Accessibility in Local E-Government

Websites through End-User Development: A Case Study. Int. J. Universal Access in the
Information Society (to appear)

9. Bourguin, G., Derycke, A., Tarby, J.C.: Beyond the Interface: Co-Evolution inside
Interactive Systems - a Proposal Founded on Activity Theory. In: IHM-HCI, pp. 297–310.
Springer, Heidelberg (2001)

10. Folmer, E., van Welie, M., Bosch, J.: Bridging Patterns: An Approach to Bridge Gaps
between SE and HCI. Information and Software Technology 48, 69–89 (2006)

11. Hix, D., Hartson, H.R.: Developing User Interfaces: Ensuring Usability through Product &
Process. John Wiley & Sons, Inc., Chichester (1993)

12. Perlis, A.J.: Special Feature: Epigrams on Programming. SIGPLAN Not. 17, 7–13 (1982)
13. Fischer, G.: Beyond Binary Choices: Understanding and Exploiting Trade-Offs to Enhance

Creativity. First Monday 11 (2006)
14. Buono, P., Simeone, A.L.: An Experience About User Involvement for Successful Design.

In: D’Atri, A., De Marco, M., Casalino, N. (eds.) Interdisciplinary Aspects of Information
Systems Studies. Springer, Heidelberg (to appear)

 Supporting End Users to Be Co-designers of Their Tools 85

15. Costabile, M.F., Mussio, P., Parasiliti Provenza, L., Piccinno, A.: End Users as Unwitting
Software Developers. In: Proceedings of the 4th international workshop on End-user
software engineering (WEUSE 2008), pp. 6–10. ACM, Leipzig (2008)

16. Shneiderman, B.: Leonardo’s Laptop: Human Needs and the New Computing
Technologies. MIT Press, Cambridge (2002)

17. Burnett, M., Cook, C., Rothermel, G.: End-User Software Engineering. Commun.
ACM 47, 53–58 (2004)

18. Fischer, G., Giaccardi, E.: Meta-Design: A Framework for the Future of End User
Development. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End User Development,
vol. 9, pp. 427–457. Springer, Dordrecht (2006)

19. Myers, B., Hudson, S.E., Pausch, R.: Past, Present, and Future of User Interface Software
Tools. ACM Trans. Comput.-Hum. Interact. 7, 3–28 (2000)

20. Sutcliffe, A., Mehandjiev, N.: Introduction. Communications of the ACM 47, 31–32
(2004)

21. Fischer, G., Giaccardi, E., Ye, Y., Sutcliffe, A., Mehandjiev, N.: Meta-Design: A
Manifesto for End-User Development. Communications of the ACM 47, 33–37 (2004)

22. De Souza, C.S., Barbosa, S.D.J.: A Semiotic Framing for End-User Development. End
User Development. In: Lieberman, H., Paternò, F., Wulf, V. (eds.) End User Development,
vol. 9, pp. 401–426. Springer, Dordrecht (2006)

23. Iverson, K.E.: Notation as a Tool of Thought. Communications of the ACM 23, 444–465
(1980)

24. Costabile, M.F., Fogli, D., Mussio, P., Piccinno, A.: A Meta-Design Approach to End-
User Development. In: IEEE Symposium on Visual Languages and Human-Centric
Computing, pp. 308–310. IEEE Computer Society, Dallas (2005)

25. Fogli, D., Fresta, G., Mussio, P.: On Electronic Annotation and Its Implementation. In:
Proceedings of the working conference on Advanced visual interfaces, pp. 98–102. ACM,
Gallipoli (2004)

26. Carrara, P., Fogli, D., Fresta, G., Mussio, P.: Toward Overcoming Culture, Skill and
Situation Hurdles in Human-Computer Interaction. Universal Access in the Information
Society 1, 288–304 (2002)

27. Fischer, G.: Symmetry of Ignorance, Social Creativity, and Meta-Design. In: Proceedings
of Creativity & Cognition 1999, pp. 116–123. ACM Press, New York (1999)

28. Costabile, M.F., Fogli, D., Marcante, A., Mussio, P., Piccinno, A.: A Design Methodology
for Tailorable Visual Interactive Systems. In: Int. Conference on Software Engineering and
Knowledge Engineering, San Francisco Bay, CA, USA, pp. 450–455 (2006)

29. Petre, M., Blackwell, A.F.: Children as Unwitting End-User Programmers. In: IEEE
Symposium on Visual Languages and Human-Centric Computing, VL/HCC 2007, pp.
239–242 (2007)

	Supporting End Users to Be Co-designers of Their Tools
	Introduction
	Background and Motivation
	A Strategy for Supporting Users’ Co-design
	SSW Architecture as a Network of Customized Environments
	A Case Study
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

