Corso di Laurea in INFORMATICA Magistrale Interazione Uomo-Macchina II Modulo A a.a. 2009-2010

П

I fenomeni che caratterizzano l'interazione: coevoluzione, grain, divario comunicazionale, diversità degli utenti, d-experts, modello PCL, modello di interazione e co-evoluzione

Questi lucidi sono stati preparati da Maria Francesca Costabile, Università degli Studi di Bari, per uso didattico. Essi contengono materiale originale di proprietà dell'Università degli Studi di Bari e/o figure di proprietà di altri autori, società e organizzazioni di cui e' riportato il riferimento. Tutto o parte del materiale può essere fotocopiato per uso personale o didattico ma non può essere distribuito per uso commerciale. Qualunque altro uso richiede una specifica autorizzazione da parte dell'Università degli Studi di Bari e degli altri autori coinvolti.

Motivation

- ➤ Evolution of computing Old computing is about what computers can do, new computing about what humans can do (Shneiderman 2003)
- Several phenomena make human-computer interaction difficult

Communicational gap

- ➤ Users and software designers adopt different reasoning strategies:
 - > heuristic vs. algorithmic
 - > examples, analogies vs. deductive abstract tools
 - > concreteness vs. abstraction
- Users are forced to express their problems in alien "computerese" and play the role designers think users have to play
- ... but users are domain experts!!!

3

Tool Grain

- ➤ Tendency of a tool to (implicitly) force some user behaviors [Dix et al. 98]
- ➤ The grain is often not amenable to user reasoning, and possibly misleading for them

User diversity within a community

- User history (skill, culture, knowledge), and specific abilities (physical/ cognitive)
- ➤ User geographical (basic cultural) dispersion
- > Tasks to be performed and context of activities

5

Co-evolution

- ➤ The tool is not simply added on the human activity, rather it makes it evolve
- "Using the system changes the users, and as they change they will use the system in new ways" [Nielsen, Usability Engineering, 1993]
- ➤ New uses of the system require the environment to evolve and force the designers to adapt system and technology to the evolved user and environment

Implicit Information

- ➤ A part of the information is implicitly embedded in the message and is meaningful only for experts in the domain
- ➤ Example: Arabian people are used to read from right to left
- > Designers must take into account implicit information

7

Tacit knowledge

- Tacit knowledge is knowledge that a person possesses and uses to carry out his/her tasks but that s/he is unable to express
- tacit knowledge and implicit information have to be embedded into the interactive system supporting users' work

A Camuni cadastral map (1500 BC)

Users

- Recognize functional or perceptual units the characteristic structures (CSS),
- Interpret (assign a meaning to) CSs as characteristic patterns (CD)

$$\mathcal{F} \rightarrow man$$
, \longrightarrow House (hut), \longrightarrow Tilled field

• Compose cp into more complex cps by grouping css and deriving a new meaning

10

Variety of interpretations

In different context
and /or
pursuing different goals
a same user
interprets the document
differently

Different users may have different interpretations pursuing the same goal in the same context

11

Il Modello PCL (Pictorial Computing Laboratory)

Comunicazione come base dell'interazione

interpretation

i
$$H \stackrel{\text{interpretation}}{\longleftarrow} i (t_i) \stackrel{\text{materialization}}{\longleftarrow} C$$

i $I (t_1) \stackrel{\text{interpretation}}{\longleftarrow} i (t_2) \stackrel{\text{interpretation}}{\longleftarrow} i (t_n)$

the image **materializes** the meaning intended by the sender and must be **interpreted** by the receiver

In una macchina moderna...

Azione, Calcolo, Reazione, Ragionamento \rightarrow sequenza di messaggi $i(t_0)$ $i(t_1)$ $i(t_n)$ CEPRAZIONE DELLA SITUAZIONE NIZIALE

DEFINAZIONE DELLA SITUAZIONE NIZIALE

DEFINAZIONE DELLA SITUAZIONE NIZIALE

DEFINAZIONE DELLA SITUAZIONE RIZIALE

DEFINAZIONE DELLA SITUAZIONE DELLA SITUAZIONE DILLA SITUAZIONE DILL

L'uomo esegue l'azione in relazione alle *strutture* da lui *riconoscibili* nel messaggio presente, modificando così il messaggio

L'azione è interpretata dal calcolatore in relazione alle *strutture conosciute* dalla macchina nel messaggio

Il *significato dell'azione* è valutato mediante il calcolo; il risultato permette di calcolare la reazione della macchina (eseguita dagli strumenti di output)

Il calcolatore produce la reazione modificando le *strutture conosciute* dal calcolatore nel messaggio

The interpretation-materialization process between the human and the machine

HUMAN

interprets images

- a) recognizing characteristic structures (CSs)
- b) associating to the CSs a meaning, defining characteristic patterns CDs

materializes his/her intention acting on a cs using the input devices (activities)

MACHINE

interprets streams of input events

- a) relating them with its cps
- b) computing the response to human activities

materializes the

results using the output devices

Further phenomenon affecting HCI

Co-evolution of users and systems

"Using the system changes the users, and as they change they will use the system in new ways"

Nielsen 1993

"The individual is a proving target. Design for the individual of tode, and the design will be wrong tomorrow [...]. This is because as individuals gain proficiency in usage, they need different interfaces then were required when they were beginners"

Interaction and Co-Evolution (ICE) model

Inspired by [Bourguin et al. 2001] [Carroll and Rosson 1992]

17

Domain-expert users

- > A special category of end-users
- ➤ Experts in a specific domain, not necessarily experts in computer science, who use computer environments to perform their daily tasks
- > Medical doctors, mechanical engineers, geologists, ...

How to support domain-experts

- Recognize that experts develop their own *languages* and *notations* to reason on problems and communicate solutions
- Recognize user diversity within the same community
- Design environments that:
 - allow domain experts to interact through their visual notations and with tools familiar to them
 - make abstract Computer Science concepts concrete to users and allow users to follow their learning and reasoning strategies
 - > permit user-system co-evolution

19

"one size fits all" Vs "one-task"

general purpose tools

- Too difficult to use, to learn and too ocomplex
- General purpose tools are not suitable for end-users

one-task tools

- Very few functionalities: only the needed ones
- Easy to use

Tools supporting a limited set of tasks

few functionalities aimed at accomplishing the tasks for a specific purpose or for a specific user community

Human-computer co-evolution

"Using the system changes the users, and as they change they will use the system in new ways"

Nielsen 1993

• Interactive systems are anymore a monolithic piece of software

Interactive systems must be designed to evolve as evolving user needs might require

• Allowing end-users to personalize and evolve at run time their own software environments → End User Development