
Guidelines for Eliciting Usability Functionalities
Natalia Juristo, Ana Maria Moreno, and Maria-Isabel Sanchez-Segura

Abstract—Like any other quality attribute, usability imposes specific constraints on software components. Features that raise the

software system’s usability have to be considered from the earliest development stages. But, discovering and documenting usability

features is likely to be beyond the usability knowledge of most requirements engineers, developers, and users. We propose an

approach based on developing specific guidelines that capitalize upon key elements recurrently intervening in the usability features

elicitation and specification process. The use of these guidelines provides requirements analysts with a knowledge repository. They

can use this repository to ask the right questions and capture precise usability requirements information.

Index Terms—Usability requirements, usability features elicitation, requirements elicitation.

Ç

1 INTRODUCTION

USABILITY is a quality attribute found in most classifica-
tions [26], [27], [8]. It is the extent to which specific

users can use a product to their satisfaction in order to
effectively and efficiently achieve specific goals in a specific
context of use [30]. Usability is a critical aspect in interactive
software systems [14], [48], offering important cost savings
and revenue increases [18], [43], [13].

For the past two decades, software usability has been

perceived in software development as related to the

presentation of information to the user [47], [21]. Software

engineers have treated usability primarily by separating the

presentation portion from the system functionality as

recommended by generally accepted design strategies

(e.g., MVC or PAC [11]). This separation makes it easier

to modify the user interface and improve usability without

affecting the rest of the application. Consequently, there is a

belief that usability can be considered late in the develop-

ment process (generally after testing) as it should not take

too much rework to improve this quality attribute.
Recently, usability’s implications for the application core

have been explicitly highlighted from a software engineer-

ing (SE) perspective. Perry and Wolf have claimed that

usability issues place static and dynamic constraints on the

software components [44]. Bass et al. [2], [3] have used a

bottom-up approach based on fieldwork observation to

describe a set of scenarios representing usability issues that

have an effect on the software architecture. We1 have

decomposed usability into features and examined which
ones have an impact on software architecture [1]. The
implications of the usability features for design materialize
as the creation of special items (components, responsibil-
ities, interactions, classes, methods, etc.) that affect both the
presentation and application layer of the software system
architecture. Therefore, addressing usability features at the
end of the construction process will involve major rework.
To avoid this, it has been suggested that software usability
should be dealt with proactively at the architectural design
stage instead of retroactively after testing [4], [10], [21], [35].
We think this should be taken a step further and usability
should be brought forward in the development process and
considered at the requirements stage. Addressing usability
at the requirements stage has the same benefits as
considering other quality attributes early on in the devel-
opment process [5]: “The earlier key quality attribute
requirements are identified and prioritized, the more likely
it is that the essential quality attributes will be built into the
system. It is more cost-effective to reason about quality
attribute trade-offs early in the lifecycle than later in the
lifecycle when modifications are often difficult, impractical,
or even impossible.”

Building usability into a software system has a cost and
calls for negotiation with users and other stakeholders
about which usability features should be included, the
consequences of their inclusion, how to provide them, etc.
As applied to other quality attributes, it is more cost-
effective to reason about usability trade-offs early in the
lifecycle.

This paper focuses on particular usability features with
high functional implications and discusses how to deal with
them at the requirements stage. To do this, Section 2
addresses what we have called functional usability features.
Section 3 presents some completeness problems caused by
the incorporation of functional usability features as require-
ments and discusses how the traditional approaches for
dealing with incompleteness are hard to apply in this case.
Section 4 presents the approach we followed to avoid such
problems. Section 5 discusses the pattern-oriented solution
we propose. Finally, Section 6 shows some results related to
pattern use.

744 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 11, NOVEMBER 2007

. N. Juristo and A.M. Moreno are with the School of Computing,
Universidad Politécnica de Madrid, Campus de Montegancedo s/n,
28660 Boadilla del Monte, Madrid, Spain.
E-mail: {natalia, ammoreno}@fi.upm.es.

. M.-I. Sanchez-Segura is with the Computer Science Department,
Universidad Carlos III de Madrid, Avda. De la Universidad, 30, 28911
Leganés, Madrid, Spain. E-mail: misanche@inf.ucsm.es.

Manuscript received 21 Aug. 2006; revised 29 Jan. 2007; accepted 30 Aug.
2007; published online 10 Sept. 2007.
Recommended for acceptance by A. Anton.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-0199-0806.
Digital Object Identifier no. 10.1109/TSE.2007.70741.

1. EU funded STATUS Project IST-2001-32298 available at http://
is.ls.fi.upm.es/status/.

0098-5589/07/$25.00 � 2007 IEEE Published by the IEEE Computer Society

2 FUNCTIONAL USABILITY FEATURES

Both the Human Computer Interaction (HCI) [29], [32] and
SE [50] disciplines deal with usability as a nonfunctional
requirement. Usability requirements specify user effective-
ness, efficiency, or satisfaction levels that the system should
achieve. These specifications are then used as a yardstick at
the evaluation stage: “A novice user should learn to use the
system in less than 10 hours” or “rnd user satisfaction with
the application should be higher than Z on a 1-to-5 scale.”
Dealing with usability in the shape of nonfunctional
requirements does not provide developers with enough
information about what kind of artifacts to use to satisfy
such requirements. Recent studies have targeted the
relationship between usability and functional requirements.
Cysneiros et al. suggest identifying functional requirements
that improve particular usability attributes [16]. We propose
a complementary approach in which usability features with
major implications for software functionality are incorpo-
rated as functional requirements. We have termed these
features functional usability features.

The usability literature has provided an extensive set of
guidelines to help developers to build usable software. Each
author has named these guidelines differently: design
heuristics [41], principles of usability [14], [48], usability
guidelines [23], etc. Although all of these recommendations
share the same goal of improving software system usability,
they are very different from each other. For example, there
are very abstract guidelines like ”prevent errors” [41] or
”support internal locus of control” [48], [23], and others that
provide more definite usability solutions like “make the
user actions easily reversible” [23] or “provide clearly
marked exits” [41].

To identify a preliminary list of functional usability
features, we took the usability features with relevant
usability benefits (according to the usability literature)
and with strong design implications (according to the
STATUS project [33], [34] and Bass et al. [2], [3]). Table 1
shows the result of this process. The list of usability features
in Table 1 is not intended to be exhaustive; these features
are a starting point for identifying usability features with an
impact on software system functionality. They are a good
example of usability features that should be considered at
the requirements stage.

The features described in Table 1 represent particular
functionalities that can be built into a software system to
increase usability. Since functional requirements describe the
functions that the software is to execute [50], we consider that
the usability features in Table 1 should be treated as
functional requirements (even though they are usability-
related requirements). Such functional usability require-
ments need to be explicitly specified, just like any other
functionality. If these usability functionalities are properly
described in the requirements specification, they are more
likely to be built into the system. They will improve the
system’s usability and contribute to the usability levels
established in the nonfunctional requirements.

We will see in the next section that properly specifying
functional usability features is not void of difficulties.

3 DIFFICULTIES OF INCORPORATING USABILITY

INTO FUNCTIONAL REQUIREMENTS

Usability functionalities could be specified by just stating
the respective usability features. For example, “the system
should provide users with the ability to cancel actions” or

JURISTO ET AL.: GUIDELINES FOR ELICITING USABILITY FUNCTIONALITIES 745

TABLE 1
A Preliminary List of Functional Usability Features

“the system should provide feedback to the user.” This is
actually the level of advice that most HCI heuristics
provide. The HCI community assumes that this level of
detail is sufficient for developers to properly build a
usability feature into the system. For example, one of the
most commonly recurring HCI guidelines is Nielsen’s
feedback heuristic: “The system should always keep users
informed about what is going on through appropriate
feedback within reasonable time” [41]. However, this
description provides nowhere near enough information to
satisfactorily specify the feedback functionality, let alone
design and implement it correctly.

To illustrate what information is missing, let us look at
the complexity and diversity of the feedback feature. As we
will see later, the HCI literature ([51], [54], [31], [53], [15],
[6]) identifies four types of Feedback: Interaction Feedback to
inform users that the system has heard their request,
Progress Feedback for tasks that take some time to finish,
System Status Display to inform users about any change in
the system status, and Warnings to inform users about
irreversible actions. Additionally, each feedback type has its
own peculiarities. For example, many details have to be
taken into account for a system to provide a satisfactory
System Status Feedback: what states to report, what
information to display for each state, how prominent the
information should be in each case (e.g., should the
application keep control of the system while reporting or
should the system let the user work on other tasks while
status reporting), etc.

Therefore, a lot more information than just a description
of the usability feature must be specified to properly build
the whole feedback feature into a software system. Devel-
opers need to discuss this information with and elicit it
from the different stakeholders.

Note that the problem of increasing functional require-
ments completeness is generally solved by adding more
information to the requirements [38], [6]. Even so, require-
ments completeness is never an easy problem to solve [12],
[20], [39] and this is even harder in the case of functional
usability requirements. In most cases, neither users nor
developers are good sources of the information needed to
completely specify a usability feature. Users know that they
want feedback; what they do not know is what kind of
feedback can be provided, which is best for each situation,
and, still less, what issues need to be detailed to properly
describe each feedback type. Neither do software engineers
have the necessary HCI knowledge to completely specify
such functional usability requirements since they are not
usually trained in HCI skills [36].

The HCI literature suggests that HCI experts should join
software development teams to deal with this missing
expertise [28], [40]. However, this solution has several
drawbacks. The first is that communication difficulties arise
between the software developer team and HCI experts as
HCI and SE are separate disciplines [47]. They use different
vocabulary, notations, software development strategies,
techniques, etc. Misunderstandings on these points can
turn out to be a huge obstacle to software development.
Another impediment is the cost. Large organizations can

afford to pay for HCI experts, but many small-to-medium
software companies cannot.

4 GENERATING GUIDELINES FOR GATHERING

INFORMATION ABOUT FUNCTIONAL USABILITY

FEATURES

Our approach consists of packaging guidelines that
empower developers to capture functional usability re-
quirements without depending on a usability expert. These
guidelines help developers to understand the implications
of and know how to elicit and specify usability features for
a software system.

The information provided by the HCI literature is not
directly applicable for this purpose. We have analyzed this
information from a software development point of view
and have elaborated on elicitation and specification guide-
lines. In the following, we describe this work in detail.

First, we extracted and categorized the information about
functional usability features provided by the different HCI
authors. We found the most detailed information on
usability features in [53], [54], [51], [15], [31]. This informa-
tion has served as a basis for identifying which issues
should be discussed with stakeholders during the elicitation
process. However, there is not enough HCI information to
derive the essentials to be elicited and specified for all the
functional usability features in Table 1. This is why features
like Shortcuts and Reuse, for example, have been left out.

The usability features that we have worked on are listed
below, along with their HCI sources of information. We
intend to add the missing features to the list when more
HCI information becomes available.

. Feedback (Tidwell [51], van Welie [54], Laasko [31],
Brighton [53], Coram and Lee [15], Benson et al. [6]),

. Undo/Cancel (Brighton [53], Tidwell [51], [52], van
Welie [54], Laasko [31]),

. User input errors prevention/correction (van Welie
[54], Tidwell [52]),

. Wizard (van Welie [54], Tidwell [52]),

. User profile (van Welie [54], Tidwell [51]),

. Help (Tidwell [51], [52]), and

. Command aggregation (Tidwell [51], [52]).

Note that this is a preliminary working list of usability
features. We plan to add other features, such as Default
Settings [51] or History Logging [51], [52], for which the
HCI literature provides information but whose relation to
software design has not been yet researched.

Each HCI author identifies different varieties of these
usability features. We have denoted these subtypes as
usability mechanisms and have given them a name that is
indicative of their functionality (see Table 2). Then, we
defined the elicitation and specification guides for the
usability mechanisms. We focused on the information
provided by HCI authors. For example, Tidwell points
out, for System Status [51], “Well-designed displays of
information to be shown should be chosen. They need to be
unobtrusive if the information is not critically important,
but obtrusive if something critical happens. Choose well-
designed displays of the information to be shown. Put them

746 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 11, NOVEMBER 2007

together in a way that emphasizes the important things,
deemphasizes the trivial, doesn’t hide or obscure anything,
and prevents confusing one piece of information with
another” Similarly, Coram and Lee [15] focus on where
to display this information.

We analyzed all of the recommendations on the same
mechanism, combined them, and removed redundancies.
However, as the HCI community is concerned not with
software development but with what makes software

usable, the resulting HCI-derived recommendations mainly
focus on presentation issues and do not address the
difficulties of building such features into a software system.
The HCI recommendations cannot be used directly to
capture software requirements, but they can be studied
from a development point of view to generate issues to be
discussed with the user to properly specify usability
features. For System Status Feedback, for example, the
criticality of the different tasks or situations to be reported

JURISTO ET AL.: GUIDELINES FOR ELICITING USABILITY FUNCTIONALITIES 747

TABLE 2
Usability Mechanisms for which Usability Elicitation and Specification Guides Have Been Developed

needs to be analyzed since the appropriate information has
to be displayed in different ways depending on its
criticality. These details are important as they have an
impact on this mechanism’s design. Designing obtrusive
information (for which purpose the program control has to
be stopped) is quite different from designing unobtrusive
information (where the runtime flow does not have to be
interrupted).

Summarizing, we used HCI literature as a source of
information. Then, we analyzed this information from a
development perspective. Finally, we elaborated upon this
information to get a set of issues to be discussed with
stakeholders. The result of this work is shown in the next
section.

5 A PATTERN-BASED SOLUTION FOR GATHERING

FUNCTIONAL USABILITY REQUIREMENTS

The outcome of the previous tasks is packaged in what we
call a usability elicitation pattern. Patterns are already being
used by other authors to reuse requirements knowledge.
Patterns that capture general expertise to be reused during
different requirements activities (elicitation, negotiation,
documentation, etc.) are to be found in [22], [46], for
example. In [55], Whitenak proposes 20 patterns to guide
the analyst through the application of the best techniques
and methods for the elicitation process. Patterns have
already been used to represent specific functional require-
ments to be reused in different applications [37].

Our usability elicitation patterns capitalize upon elicita-
tion know-how so that requirements engineers can reuse
key usability issues intervening recurrently in different
projects. Patterns help developers to extract the necessary
information to specify a functional usability feature.

We have developed one usability elicitation pattern for
each usability mechanism in Table 2. They are available at
http://is.ls.fi.upm.es/research/usability/usability-elicita
tion-patterns. Tables 3a and 3b show an example of the
System Status Feedback mechanism pattern. The next
section discusses how to use this pattern. First, let us
briefly describe the fields making up this pattern:

. Identification of the usability mechanism addressed
by the pattern (that is, its name, the family of usability
features to which it belongs, and possible aliases by
which this usability mechanism may be known).

. The problem addressed by each pattern, that is, how
to elicit and specify the information needed to
incorporate in a software system the corresponding
usability mechanism.

. The usability context in which this pattern will be
useful.

. The solution to the problem addressed by the pattern.
This is composed of two elements. The usability
mechanism elicitation guide provides knowledge for
eliciting information about the usability mechanism.
It lists the issues to be discussed to properly define
how the usability mechanism needs to be considered
along with the corresponding HCI rationale. The
usability mechanism specification guide provides an
example of a specification skeleton.

. The related patterns refer to other usability elicitation
patterns whose contexts are related to the one under
study and which could also be considered in the
same application. No related patterns have being
identified in the example shown in Tables 3a and 3b.
Readers are referred, however, to other patterns
available at the Website, like Long Action Feedback
or Abort Operation.

6 USING PATTERNS TO ELICIT AND SPECIFY

FUNCTIONAL USABILITY INFORMATION

We use an example of a software system for theatre ticket

sales for use by box office operators to illustrate pattern use.

This is a highly interactive system with a specific user type.

These two factors condition the usability requirements to be

considered quite a lot.

The use of elicitation patterns involves instantiating

them for each particular system. They should be applied

after a preliminary version of the software requirements has

been created. There needs to be an initial common vision of

system functionality before developers and users can

discuss whether and how specific usability mechanisms

affect the software.
After this initial understanding of the software to be

built, the developer can use the identification part of the

pattern to appreciate the generics of the usability mechan-

isms to be addressed. The discussion with the stakeholders

starts by examining the pattern context section that

describes the situations for which this mechanism is useful.

If the mechanism is not relevant for the application, its use

will be rejected. Otherwise, the respective usability func-

tionality will be elicited and specified using the solution part

of the pattern.

In the case of our theatre system, our client considered

that the Object Specific Undo, Command Aggregation, and

User Profile-related mechanisms were of no interest. These

application users do not get to be expert users because staff

turnover is high. On this ground and because of the cost of

incorporating the first two mechanisms, stakeholders

decided that they were not to be built into the system.

Again because of the high turnover, very few, if any, users

are on the system long enough for the User Profile

functionality to be warranted or even feasible.

The next step is to deal with the solution part of the

pattern. Regarding the usability mechanism elicitation guide, it

is important that developers read and understand the HCI

rationales in the guide, that is, the HCI recommendations

used to derive the respective issues to be discussed with

stakeholders. This will help developers to understand why

they need to deal with those issues. Not all questions in the

patterns require the same level of involvement of all kinds

of stakeholders. In fact, we can identify three groups of

questions:

1. questions that the user/client can answer on his or
her own (which statuses are relevant in a particular
application?);

748 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 11, NOVEMBER 2007

2. questions that the user/client can answer following

the recommendations of a GUI expert (which is the

best place to locate the feedback information for each

situation?—the GUI expert is able to provide

guidance for displaying this kind of information,

whereas the user will choose one of the options); and

3. questions that the developer must answer but on
which the user should give his opinion (does the user

JURISTO ET AL.: GUIDELINES FOR ELICITING USABILITY FUNCTIONALITIES 749

TABLE 3a
System Status Feedback Usability Elicitation Pattern

TABLE 3b
System Status Feedback Usability Elicitation Pattern (Continued)

want the system to provide notification if there are not
enough resources to execute the ongoing commands? If so,
which resources?—the developer must provide in-
formation about the internal resources needed to
perform the different tasks and the user will decide
about which ones he or she wants to be informed.

We recommend documenting this discussion by means

of an issue/functionality/requirement table such as Table 4.

This table shows a fragment of this information for the

ticket sales system. It shows, for each issue to be discussed

with stakeholders:

1. Why it is applicable to this system and the specific
functionalities that it affects.

2. The requirements related to the affected functional-
ities and/or possible new requirements that emerge
from the usability issues discussed. In the case of the
ticket system, no new requirements had to be added
for the system status usability mechanism. There-
fore, the last column of Table 4 is left blank.

This issue/functionality/requirement table helps devel-

opers to think systematically about the effect of usability

mechanisms across the system, enabling them to identify

which requirements will be affected. It is useful for

discovering and documenting the usability mechanisms,

even though it may take some extra effort.

The elicited usability information can be specified
following the pattern specification guide. This guide is a
prompt for the developer to modify each requirement
affected by the incorporation of each mechanism. Fig. 1
shows a fragment of a requirement modified to include all
of the usability mechanisms that affect it. The parts added
as a result of using the respective usability elicitation
patterns are highlighted in bold face and italics.

Modifying a requirement to include certain usability
mechanisms involves adding the details describing how to
apply these mechanisms to this functionality. As of this
point, the remaining development phases are undertaken as
always and the new usability functionality is integrated into
the development process. This prevents the rework that the
alternative of incorporating usability features at later
development stages would entail.

Building usability mechanisms into a system results in
an extra workload since new functionalities are incorpo-
rated. This process can be sped up by relaxing the
documentation. The developers could skip building the
issues/functionalities/requirements tables and modify the
functional requirements directly or enter the results of the
discussion about usability recommendations directly into
some of the early software products (prototypes or mock-
ups, analysis models, etc.), depending on the development
process. To adopt this agile alternative, the developer will
need to be quite experienced in the problem domain and
pattern use so as not to overlook any details. Though the

750 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 11, NOVEMBER 2007

TABLE 4
Fragment of the Issue/Functionality/Requirement Table for the System Status Feedback Pattern and the Tickets Sale Application

incorporation of the usability mechanisms can be made
more agile, the elicitation effort is necessary for the results
of the discussion to be able to be built into the software.

7 EVALUATION OF THE USABILITY ELICITATION

PATTERNS

We have analyzed the potential benefits of the usability
elicitation patterns at different levels. We have been working
with SE Master students since 2003 on this project. These
students have developed software systems to which they
added the functional usability features listed in Table 2.

Initially, we focused on refining the content of the
patterns. Ten students used the patterns on requirements
they had specified. These students had all the knowledge
about the problem domain to respond to the issues raised in
the patterns. Our aim was to determine potential difficulties
associated with the pattern structure, question statements,
etc. We tuned the patterns and about 20 percent of their
contents were reworked. The resulting operational version
of the patterns is the one that we present here.

Then, we studied how useful the patterns were for
incorporating the usability mechanisms into a software
system. We expected pattern use to lead to an improvement
on the original situation where developers did not have any
compiled or systematic usability information. We worked
with five groups of three students. Each group was
randomly allocated a different software requirement

specification (SRS) document in IEEE 830 format [25]
corresponding to a real application:

. theatre tickets sale system,

. PC storage and assembly system,

. temping agency job offers management system,

. car dealer vehicle reservation and sale system, and

. travel agency bookings and sale system.

Each of the three students in the group was asked to add
the functionality derived from the functional usability
features listed in Section 4 to the original SRS independently
and to build the respective software system. The procedure
was as follows:

. We gave one of the students the usability elicitation
patterns discussed in this paper. This student used
the pattern content to elicit the usability function-
ality as explained in the last section.

. Another student was given reduced patterns. To
give readers a feeling for the difference between the
reduced and full patterns, the reduced pattern for
System Status Feedback is shown in Appendix A.
This short pattern is just a compilation of informa-
tion from the HCI literature about the usability
mechanisms. We have not elaborated upon this
information from a development perspective, i.e.,
the reduced patterns do not include the “Issues to be
discussed with stakeholders” column in Tables 3a

JURISTO ET AL.: GUIDELINES FOR ELICITING USABILITY FUNCTIONALITIES 751

Fig. 1. Fragment of a requirement modified with usability functionality.

and 3b. The idea behind using the reduced patterns
was to confirm whether our processing of the HCI
information resulting in the formulation of specific
questions was useful for eliciting the functionality
related to the mechanisms or whether developers are
able to extract such details just from the HCI
literature.

. Finally, the third student was given just the
definitions of the usability features according to the
usability heuristics found in the HCI literature and
was encouraged to take information from other
sources to expand this description.

Students of each group were randomly allocated the
usability information they were to use (completed patterns,
reduced patterns, and no patterns) to prevent student
characteristics from possibly biasing the final result. Fig. 2
summarizes the allocation results.

Final system usability was analyzed differently to
determine how useful the elicitation patterns were for
building more usable software. We ran what the HCI
literature defines as usability evaluations carried out by
users and heuristic evaluations done by usability experts
[14], [19], [48], [41], [42].

7.1 Users’ Usability Evaluation

The usability evaluations conducted by users are based on
usability tests in which the users state their opinion about
the system. Before doing the tests, users need to carry out a
number of standard tasks, called a scenario, to get
acquainted with the software. We adapted the QUIS
usability test [45] to the particularities of the users we
worked with and the applications to be evaluated. Our
users had no experience in usability testing and they did
not have very long to perform the evaluation. Therefore, we
focused on questions that would give a clearer picture of
user satisfaction, rewrote the questions to make them more
understandable for users in the context of the applications

they were to evaluate, and used a scoring system based on a
scale of 1 (lowest usability) to 5 (highest usability) rather
than the standard QUIS test’s 1-to-9 range (it is more
straightforward and quicker to identify differences on a 5
than on a 9-point scale). Appendix B includes a usability
scenario and the usability test we used. The final usability
score is the mean of the responses to each question.

We worked with three representative users (typical
users) for each system with whom our clients put us into
touch. Each user evaluated the three versions of each
application (one developed with full patterns, one with
reduced patterns, and one with no patterns). This way the
users could appreciate any differences between versions,
although they did not know which usability information
had been used to develop which version. The users
evaluated these versions in a different order to prevent
scenario learning possibly having a negative effect on the
same version of the application. Table 5 shows this
evaluation process (the order in which each user evaluated
each version of the respective application appears between
brackets).

All three representative users for each application were
assembled in the same room. Each user executed the
respective scenario for the first version of the application
and completed the usability test. Users then enacted the
same process for the second version of the application to be
evaluated and, finally, did the same thing for the third
version. As Table 5 shows, User 1 first evaluated the version
of the theatre ticket system developed with the reduced
patterns (i.e., executed the scenario and filled in the
usability questionnaire), followed by the version developed
with the full patterns, and, finally, the version developed
with any pattern. The other users enacted the same process
for this application and the same protocol was used for all
five systems.

The mean usability values for the five applications are
4.4, 3.2, and 2.5, with standard deviations of 0.3, 0.2, and 0.4,

752 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 11, NOVEMBER 2007

Fig. 2. Results of the pattern allocation process.

respectively. The Kruskal-Wallis test confirmed that there
was a statistically significant difference among these
usability means (p-value < 0.01; chi-square = 36.625). The
Tamhane test (for unequal variances) showed that the
usability value for the systems developed using the full
patterns was statistically greater than the score achieved
using the reduced patterns and both were greater than the
usability value attained without any pattern (in all cases,
p-value < 0.01). Therefore, we were able to confirm that the
users perceived the usability of the systems developed with
the full usability elicitation patterns to be higher.

With the aim of identifying the reasons that led users to
assess the usability of the different types of applications
differently, we had an expert in HCI run a heuristic
evaluation.

7.2 Usability Expert Evaluation

A paid independent HCI expert ran the usability evaluation
of the applications developed by our MSc students. The
expert analyzed the applications focusing on how these
systems provided the usability features listed in Table 2.

Table 6 shows the results of the heuristic evaluation. It
indicates the extent to which the evaluated software
incorporates the functionality related to each usability
mechanism in all five applications. In the case of feedback,
for example, the developers who used the respective
elicitation patterns included, on average, 94 percent of the
functionalities associated with this mechanism. Developers
who used the reduced patterns incorporated 47 percent of
the respective functionalities. Finally, developers who used
no pattern included only 25 percent. The expert obtained

JURISTO ET AL.: GUIDELINES FOR ELICITING USABILITY FUNCTIONALITIES 753

TABLE 5
Users Evaluation

TABLE 6
Mean Percentage of Functionality Added for Each Usability Mechanism by Each Information Type

these data working to a blind evaluation protocol, that is,
the expert was not aware of the usability information used
as input for each version of the applications.

Applying the Kruskal-Wallis test to the expert results for
each usability feature, we found that there were statistically
significant differences among the three groups of data (see
the last column of Table 6 with p-value < 0.01 in all cases).
Again, the Tamhane test showed that all of the usability
features were built into the systems developed using the
full patterns better than they were into systems developed
using the reduced patterns and both provided more
usability details than systems developed without patterns
(with feature definitions only). This explains why users
perceived differences in the usability of the systems.

Below we discuss some findings derived from this study:

. The functionality added with the full elicitation
patterns is less than 100 percent for the most complex
patterns, like Feedback and Undo. These differences
are due to the fact that the complexity of these features
calls for a very thorough analysis of the specifications
to properly identify what parts of the system are
affected. The final result then depends on how
detailed and thorough the analyst is.

Although bringing an HCI expert into systems
development could possibly have led to 100 percent
of all the usability details being identified, elicitation
pattern use is an efficient alternative because of its
cost. Also, developers should become more ac-
quainted with the patterns as they apply them, and
efficiency in use should gradually improve.

. Looking at Table 6 closely, we find that there is a big
difference in the functionality added using the
usability information provided by the most and
least complex patterns.

For example, developers using the reduced
patterns are unable to identify all of the implications
that the HCI recommendations have for the respec-
tive usability mechanisms. In the case of feedback,
different students using the reduced patterns re-
peatedly considered the Status Feedback function-
ality related to user action confirmation (entries,
value modifications, etc.) only, overlooking other
types of status changes caused by system failures or
failures of external resources interacting with the
system. Developers who used the full patterns did
explicitly consider the feedback related to these
functionalities as the pattern includes precise ques-
tions concerning these possible changes. However,
there are fewer differences between the two devel-
opment types with regard to other usability features
like Wizard or Help because these usability mechan-
isms are less complex and involve fewer details and
cases. Even so, as mentioned before, these differ-
ences are also statistically significant.

With regard to the usability features functionality
built in without using patterns, we again found
complexity-dependent differences between features.
Although all such differences are statistically sig-
nificant, the most relevant from a practical point of
view are related to the Feedback and Undo features.
Developers who did not use patterns failed to

consider all the alternative usability mechanisms to
be incorporated. For example, Interaction Feedback,
System Status and Warning were hardly ever
considered in the case of the Feedback feature. The
same applies to Object Specific Undo or Go Back for
the Undo feature, which were not accounted for
either.

. Some of the usability features that developers
without patterns did identify were incorrectly built
into the system, sometimes causing a sizeable
information overload. For example, it was quite
common for developers to provide Long Feedback
for all system actions, irrespective of how long they
took. Also, on the few occasions where a Warning was
provided, it was presented for all task types, irrespec-
tive of their irreversibility. This did not happen when
patterns were used as patterns clearly specify when to
provide these feedback types, depending on the task
type, duration, irreversibility, etc.

Another example of user information overload
when patterns were not used is the indiscriminate
use of blocking messages whatever type of informa-
tion is being provided. This prevents the user from
doing another task, for example, while he or she is
waiting for a long task to finish. Again, pattern use
rules this out as the patterns indicate under what
circumstances blocking messages should or should
not be used.

. The weaknesses encountered in the systems pro-
duced by developers that did not use patterns are
very much related to the problems they have in
finding usability information. The Web was the key
source consulted. Developers stated that they found it
difficult to locate consistent information about a
specific usability feature because of the volume of
highly dispersed data there is on the Web. This led
developers to work with what they considered to be
“sufficient information” about the usability features.
From the expert evaluation, this information appears
to have led to the systems being only partially usable.

. Also noteworthy is the relationship between the
usability problems that the expert pointed out
about the systems and their modified SRS in
which the developers specified the respective
usability details. For example, the underuse of
some mechanisms or the information overloads of
others are also stated in the SRS. In the first case, the
modified SRS did not include the specification of the
omitted mechanisms, whereas, in the second, the
SRS stated that all the tasks carried out by the user
should be confirmed. In other words, the usability
information was incorrectly specified from the start
of development and this had a negative effect on the
final system’s usability. This supports our belief in
the importance of properly dealing with usability at
the requirements stage.

Although these are interim data and further checks need
to be run, the usability evaluations performed have
revealed trends that need to be formally tested with a
larger group of users and applications. The users’ evalua-
tion has shown that users perceive usability to be better in

754 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 11, NOVEMBER 2007

the versions of the application developed with the full
usability elicitation patterns. On the other hand, the expert
evaluation found no significant weaknesses in the usability
functionality provided in the applications built using such
patterns, whereas it detected sizeable gaps in applications
built with reduced patterns or without any pattern at all.

These findings give us some confidence in the soundness

of the usability elicitation patterns as a knowledge

repository that is useful in the process of asking the right

questions and capturing precise usability requirements for

developing software without an HCI expert on the devel-

opment team.

8 CONCLUSIONS

It is critically important to elicit requirements early enough

in the development process, especially such requirements

as have a big impact on software functionality [56], [17],

[49]. Our work takes a step in this direction, suggesting that

usability features with particular functional implications

should be dealt with at the requirements stage. This is not a

straightforward task as usability features are more difficult

to specify than they may appear: A lot of details need to be

explicitly discussed among stakeholders and, often, neither

software practitioners nor users have the HCI expertise to

do this.
We propose an alternative solution when HCI experts

are not available or the likely communication problems
between development and HCI teams are not cost justified.
We have developed specific guidelines that lead software
practitioners through the elicitation and specification pro-
cess. This approach supports face-to-face communication
among the different stakeholders during requirements
elicitation to cut down ambiguous and implicit usability
details as early as possible. As we have shown, these
guidelines help developers to determine whether and how
a usability feature applies to a particular system, leading to
benefits for the usability of the final system. The use of these
patterns leads to an extra workload during development
because more time and effort is required to answer
questions, modify requirements, etc. On the other hand,
they save effort by directing developers to proven usability
solutions, reducing thinking time and rework.

Evidently, the use of usability patterns and any other
artifact for improving software system usability calls for a
lot of user involvement throughout the development
process. This is a premise in the usability literature that is
also necessary in this case. If this condition cannot be
satisfied, the final system is unlikely to be usable. In our
opinion, therefore, a trade-off has to be made at the
beginning of the development between user availability,
time, and cost restrictions, on the one hand, and usability
results, on the other.

Finally, note that the functional usability features
addressed here are not sufficient to make software usable.
As we point out in the paper, the usability literature
contains a host of recommendations on how to do this and
we have focused on the ones with the biggest impact on
functionality.

APPENDIX A

EXAMPLE OF A REDUCED USABILITY PATTERN

An example of a reduced usability pattern is shown in Table 7.

APPENDIX B

EXAMPLE OF USABILITY SCENARIO AND USABILITY

TEST

Use the Theatre Tickets System to do the following tasks:

1. List all the plays to be performed at the Lopez de
Vega Theatre in the month of May 2006.

2. Enter a new theatre into the sales network. The
particulars of the theatre are:

Name: Amaya
Address: c/Ramblas 19 Barcelona;
Phone: 932256819
Fax 932256811

3. Enter all of the performances at the Amaya theatre
for January 2006. Performances will be at 6:00 pm
from Tuesday to Thursday and at 6:00 pm and
10:00 pm from Friday to Sunday. The play will be
El Quijote.

4. Book two tickets for the 10:00 pm performance of
Othello at the Marquina theatre on 14/2/2006. After
you have booked the tickets, you realize that you
have made a mistake and you really wanted to book
the seats for the 6:00 pm performance.

5. You are going to sell two booked tickets. You have
the booking reference to do this. When you have
located the tickets, suppose the customer asks you to
check whether there are any tickets available for the
next day. Check availability, cancel the booking, and
book tickets for the performance at the same time on
the next day.

6. Try to change the system menu formats and colors
and save them for later use.

Usability Test for Theatre Ticket Sales System
User Name:
Organization:
Date:

After practicing with the respective usability scenario,
answer the following questions by marking the respective
number. Please feel free to make any further comments you
would like to about each question. You are welcome to use
the application under evaluation if you so wish to check
your response to any of the questions.

1. Is the system help useful for understanding what
system options to select?

1 2 3 4 5
Very useful Not at all useful

2. Does the system provide an easy-to-use option for
undoing the effect of any action once it has been
taken? (For example, suppose you have booked
tickets for one performance of a play and you then
want to go back to the default performance.)

1 2 3 4 5
Never Always

JURISTO ET AL.: GUIDELINES FOR ELICITING USABILITY FUNCTIONALITIES 755

3. Do you think the system should give you more
information than it does while it is running an
operation and you are waiting for the response?

1 2 3 4 5
Not much more Yes, a lot more

4. Does the system allow you to quit any action easily
and return to what you consider to be a logical
state?

1 2 3 4 5
Never Always

5. For actions that require more than one step (e.g.,
tickets booking), do you find the steps easy to
follow instinctively?

1 2 3 4 5
Never Always

6. Does the system allow you to save your prefer-
ences, e.g., by identifying the functions you use
most?

1 2 3 4 5
Never Always

7. Does the system allow you to save your preferences
on interface details, colors, menu formats, etc.?

1 2 3 4 5
Never Always

8. When you have to enter more than one data item
into the system (e.g., to register clients), does the
software help you by automatically validating data
or by providing different options so that all you
have to do is choose the right option?

1 2 3 4 5
Never Always

9. Does the system notify you before taking an action
with important consequences (e.g., selling the
tickets or cancelling a play)?

1 2 3 4 5
Never Always

10. Do you find it easy to move around the system
instinctively?

1 2 3 4 5
Not very intuitive Very intuitive

756 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 11, NOVEMBER 2007

TABLE 7
Example of a Reduced Usability Pattern

11. Are the system responses (e.g., to confirm actions
or request information) easy to understand?

1 2 3 4 5
Not understandable Understandable

ACKNOWLEDGMENTS

This research was funded by the Spanish Ministry of

Education project TIN230005-00176.

REFERENCES

[1] A. Andrés, J. Bosch, A. Charalampos, R. Chatley, X. Ferre, E.
Folmer, N. Juristo, J. Magee, S. Menegos, and A. Moreno, Usability
Attributes Affected by Software Architecture, Deliv. 2. STATUS
project, June 2002, http://www.ls.fi.upm.es/status.

[2] L. Bass, B. John, and J. Kates, “Achieving Usability through
Software Architecture,” Technical Report CMU/SEI-2001-TR-005,
Software Eng. Inst., Carnegie Mellon Univ., 2001.

[3] L. Bass and B. John, “Linking Usability to Software Architecture
Patterns through General Scenarios,” The J. Systems and Software,
vol. 66, no. 3, pp. 187-197, 2003.

[4] L. Bass, B. John, N. Juristo, and M.I. Sanchez, “Usability
Supporting Architectural Patterns,” Proc. Int’l Conf. Software
Eng., tutorial, 2004.

[5] M. Barbacci, R. Ellison, A. Lattanze, J.A. Stafford, C.B. Weinstock,
and W.G. Wood, Quality Attribute Workshop, third ed., CMU/SEI-
2003-TR-016, Software Eng. Inst., Carnegie Mellon Univ., 2003.

[6] C. Benson, A. Elman, S. Nickell, and C. Robertson, GNOME
Human, “Interface Guidelines,” http://developer.gnome.org/
projects/gup/hig/1.0/index.html, 2007.

[7] D. Berry, “The Importance of Ignorance in Requirements
Engineering,” J. Systems and Software, vol. 28, no. 2, pp. 179-184,
1995.

[8] B. Boehm, J.R. Brown, H. Kaspar, M. Lipow, G.J. Macleod, and
M.J. Merritt, Characteristics of Software Quality. North Holland,
1978.

[9] R.G. Bias and D.J. Mayhew, Cost-Justifying Usability. An Update for
the Internet Age. Elsevier, 2005.

[10] J. Bosch and N. Juristo, “Designing Software Architectures for
Usability,” Proc. Int’l Conf. Software Eng., tutorial, 2003.

[11] F. Buschmann, R. Meuneir, H. Rohnert, P. Sommerland, and M.
Stal, Pattern-Oriented Software Architecture, A System of Patterns.
John Wiley and Sons, 1996.

[12] M.G. Chirstel and K.C. Kang, “Issues in Requirements Elicitation,”
Technical Report CMU/SEI-92-TR-012, Software Eng. Inst.,
Carnegie Mellon Univ., 1992.

[13] M. Chrusch, “Seven Great Myths of Usability,” Interactions, pp. 13-
16, Sept./Oct. 2000.

[14] L. Constantine and L. Lockwood, Software for Use: A Practical Guide
to the Models and Methods of Usage-Centered Design. Addison-
Wesley, 1999

[15] T. Coram and L. Lee, “Experiences: A Pattern Language for User
Interface Design,” 1996, http://www.maplefish.com/todd/
papers/experiences/Experiences.html.

[16] L.M. Cysneiros, V.M. Werneck, and A. Kushniruk, “Reusable
Knowledge for Satisficing Usability Requirements.” Proc. 13th Int’l
Conf. Requirements Eng., 2005.

[17] G.B. Davis, “Strategies for Information Requirements Determina-
tion,” IBM Systems J., vol. 21, no. 1, pp. 3-30, 1982.

[18] G.M. Donahue, “Usability and the Bottom Line,” IEEE Software,
vol. 18, no. 1, pp 22-30, Jan./Feb. 2001.

[19] J.S. Dumas and J.C. Redish, A Practical Guide to Usability Testing.
Exert, 1999.

[20] C. Ebert and J.D. Man, “Requirements Uncertainty: Influencing
Factors and Concrete Improvements,” Proc. Int’l Conf. Software
Eng., pp. 553-560, 2005.

[21] E. Folmer, J. van Group, and J. Bosch, “Architecting for Usability:
A Survey,” J. Systems and Software, vol. 70, nos. 1-2, pp. 61-78, 2004.

[22] L. Hagge and K. Lappe, “Sharing Requirements Engineering
Experience Using Patterns,” IEEE Software, vol. 22, no. 1, pp. 24-31,
Jan./Feb. 2005.

[23] D. Hix and H.R. Hartson, Developing User Interfaces: Ensuring
Usability through Product and Process. John Wiley and Sons, 1993.

[24] N.L. Hsueh and J.Y. Kuo, “Distributed Requirements Elicitation
Using Patterns Proceedings of the Modelling,” Proc. Identification
and Control Conf., 2003.

[25] “IEEE Std 830: Recommended Practice for Software Requirements
Specifications,” IEEE, 1998.

[26] “IEEE Std 1061: Standard for a Software Quality Metrics
Methodology,” IEEE, 1998.

[27] “ISO 9126-1 Software Engineering—Product Quality—Part 1:
Quality Model,” ISO, 2000.

[28] “ISO Std 13407: Human-Centred Design Processes for Interactive
Systems,” ISO, 1999.

[29] “ISO Std. 18529: Human-Centered Lifecyle Process Descriptions,”
ISO, 2000.

[30] “ISO Std. 9241-11: Ergonomic Requirements for Office Work with
Visual Display Terminals. Part 11: Guidance on Usability,” ISO,
1998.

[31] S.A. Laasko, “User Interface Designing Patterns,” 2003, http://
www.cs.helsinki.fi/u/salaakso/patterns/index_tree.html.

[32] T. Jokela, “Guiding Designers to the World of Usability:
Determining Usability Requirements through Teamwork,” Hu-
man-Centered Software Eng., A. Seffah, J. Gulliksen, and
M. Desmarais, eds., Kluwer, 2005.

[33] N. Juristo, A. Moreno, and M. Sánchez, “Architectural Sensitive
Usability Patterns,” Proc. Int’l Conf. Software Eng. Workshop
Bridging the Gaps between Usability and Software Development, 2003.

[34] N. Juristo, A. Moreno, and M. Sánchez, Techniques and Patterns for
Architecture-Level Usability Improvements, Deliv. 3.4 STATUS
project, May 2003, http://www.ls.fi.upm.es/status.

[35] N. Juristo, A.M. Moreno, and M.I. Sánchez-Segura, “Analysing the
Impact on Usability on Software Design,” J. Systems and Software,
vol. 80, no. 9, pp. 1506-1516, Sept. 2007.

[36] R. Kazman, J. Gunaratne, and B. Jerome, “Why Can’t Software
Engineers and HCI Practitioners Work Together?” Human-
Computer Interaction Theory and Practice, C. Stephanidis and
L. Erlbaum, eds., Elsevier, 2003.

[37] S. Konrad and B. Cheng, “Requirements Patterns for Embedded
Systems,” Proc. IEEE Int’l Conf. Requirements Eng., 2002.

[38] B. Kovitz, “Ambiguity and What to Do about It,” Proc. IEEE Joint
Int’l Conf. Requirements Eng., key talk, 2002.

[39] S. Lauesen, “Communication Gaps in a Tender Process,” Require-
ments Eng., vol. 10, no. 4, pp. 247-261, Nov. 2005.

[40] D.J. Mayhew, The Usability Engineering Lifecycle. Morgan Kauf-
mann 1999.

[41] J. Nielsen, Usability Engineering. John Wiley & Sons, 1993.
[42] J. Nielsen, “Heuristic Evaluation,” Usability Inspection Methods,

J. Nielsen and R.L. Mack, eds., John Wiley & Sons, 1994.
[43] J. Nielsen, Return on Investment for Usability. Alertbox, Jan. 2003,

http://www.useit.com.
[44] D. Perry and A. Wolf, “Foundations for the Study of Software

Architecture,” ACM Software Eng. Notes, vol. 17, no. 4, pp. 40-52,
Oct. 1992.

[45] “QUISTM Questionnaire for User Interaction Satisfaction,”
http://lap.umd.edu/QUIS/, 2007.

[46] “REPARE,” http://repare.desy.de/Repare/RepareController,
2006.

[47] A. Sheffah and E. Metzker, “The Obstacles and Myths of Usability
and Software Engineering,” Comm. ACM, vol. 47, no. 12, pp. 71-76,
Dec. 2004.

[48] B. Shneiderman, Designing the User Interface: Strategies for Effective
Human-Computer Interaction. Addison-Wesley, 1998.

[49] The Standish Group International Inc., “CHAOS Chronicles c.3.0,”
http://ww.standishgorup.com/chaos/toc.php, 2003.

[50] Guide to the Software Engineering Body of Knowledge, 2004, http://
www.swebok.org,

[51] J. Tidwell, The Case for HCI Design Patterns, http://www.mit.edu/
jdidwell/common_ground_onefile.htm, 1999.

[52] J. Tidwell, Designing Interfaces. Patterns for Effective Interaction
Design. O’Reilly, 2005.

[53] Usability Pattern Collection, http://www.cmis.brighton.ac.uk/
research/patterns/home.html, 2007.

[54] M. van Welie, The Amsterdam Collection of Patterns in User Interface
Design, http://www.welie.com, 2007.

[55] B.G. Whitenak, “RAPPeL: A Requirements-Analysis Pattern
Language for Object Oriented Development,” Pattern Languages
of Program Design, J.O. Coplien and D.C. Schmidt, eds., Addison-
Wesley, 1995.

[56] K.E. Wiegers, Software Requirements. Microsoft Press, 1999.

JURISTO ET AL.: GUIDELINES FOR ELICITING USABILITY FUNCTIONALITIES 757

Natalia Juristo received the BS and PhD
degrees in computing from the Technical Uni-
versity of Madrid (UPM). She is a full professor
of software engineering with the Computing
School at UPM, Spain. She has been the
director of the UPM MSc in Software Engineer-
ing program for 10 years. Her research areas
include software usability, empirical software
engineering, requirements engineering, and
software process.

Ana Maria Moreno received the BS and PhD
degrees in computing. She is an associate
professor with the Computer Science School at
the Universidad Politecnica de Madrid. Since
2001, she has been the director of the MSc in
Software Engineering program. Her research
interests are software usability, requirements
engineering, and empirical software engineering.

Maria-Isabel Sanchez-Segura received the
PhD degree in computer science from the
Universidad Politécnica of Madrid. She has
been an associate professor in the Computer
Science Department at Carlos III University of
Madrid since 1998. Her research interests
include project management, software reuse,
process improvement, and process improve-
ment usability using collaborative environments.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

758 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 33, NO. 11, NOVEMBER 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

