
UNIVERSITY OF BARI ALDO MORO
Computer Science Department

DOCTORAL PROGRAMME IN COMPUTER SCIENCE

XXVIII cycle

Scientific Disciplinary Sector INF/01

Design models and interaction paradigms to enable

end users to create pervasive workspaces

through service mashup

The Chair of the Doctoral Program: Prof. Donato MALERBA

Supervisor: Prof. Maria F. COSTABILE

Doctoral Dissertation of:

Giuseppe DESOLDA

__

April 2016

2

Table of contents
Chapter 1. Introduction .. 9

1.1 Rationale... 10

1.2 Thesis Contributions .. 11

1.3 Research Methods .. 13

1.4 Thesis Outline .. 13

Chapter 2. Related Work .. 15

2.1 Mashup origins ... 16

2.2 Mashup and tools ... 18

Chapter 3. Defined Models ... 39

3.1 Introduction .. 40

3.2 A Meta-Design Model to Customize a Mashup platform to a Spe-

cific Domain .. 40

3.3 Model for UI Component Mashup ... 43

3.4 A Framework for Actionable Mashups .. 54

Chapter 4. The EFESTO Platform .. 58

4.1 Introduction and Motivation... 59

4.2 A Customization Environment for EFESTO ... 59

4.3 Design of a new composition paradigm for EFESTO: an elicita-

tion study 60

4.4 Interacting with EFESTO: an example .. 64

4.5 EFESTO architecture ... 68

4.6 EFESTO Evaluation ... 77

4.7 Conclusion .. 97

Chapter 5. Linked Open-Data as New Data Source ... 99

5.1 Introduction and Motivations ... 100

5.2 Polymorphic data source: a source for many purposes 101

5.3 An algorithm for data source annotation .. 103

5.4 Conclusions and future work ... 109

Chapter 6. Cross-Device Mechanisms to Mashup Mobile Devices 111

6.1 Introduction .. 112

6.2 Elicitation study.. 113

6.3 System Technical Details ... 123

3

6.4 Utilization study ... 123

6.5 Discussion .. 131

Chapter 7. Conclusion and future work ... 133

References 136

Giuseppe Desolda’s publications during 2013-2015 .. 143

4

List of Figures
Figure 2.1: HousingMaps screenshot .. 17

Figure 2.2: Yahoo!Pipes example where services and operators are shown as visu-

al modules and linked by ‘pipes’. ... 17

Figure 2.3: EMML example to access to a CSV file and loop on its results in order

to retrieve plants for each country and append to a memory-store each result, ap-

plying a 5 second pause between each item to obtain different timestamps [73]. 27

Figure 2.4: Example of YQL query to Aggregate and filter multiple RSS feeds . 28

Figure 2.5: This Orc script starts a Bing search and a Google search simultane-

ously and prints the first set of responses.. 28

Figure 2.6: A representation of tool expressive power with respect to the required

programming skills of users .. 32

Figure 3.1: Meta-design approach to mashup creation. The bottom layer outlines

the composition environments for the end users (deployed on different devices)

and the middle layer the composition environments for domain experts: the top

layer instead highlights the role .. 43

Figure 3.2: A model of the components of our mashup .. 44

Figure 3.3: Example of UI Component that show musical events on Google Maps

 ... 45

Figure 3.4: An example of different presentation templates used to execute the

same mashup on different devices. In a the mashup runs on a desktop device. In b

the mashup runs on a large interactive display. In c the mashup runs on a tablet. 46

Figure 3.5: An example of UI component descriptor codified with our XML lan-

guage ... 50

Figure 3.6: An example of service descriptor codified with our XML language . 51

Figure 3.7: An example of mapping descriptor codified with our XML language51

Figure 3.8: An example of UI template descriptor codified with our XML lan-

guage ... 52

Figure 3.9: A graph representation of a RDF triplets.. 53

Figure 3.10: Overall organization of the framework supporting the interaction

with mashups enhanced according to TUX principles .. 57

Figure 4.1: Mapping between the SongKick data attributes and UI template fields

 ... 65

Figure 4.2: SongKick data source visualized as a map and joined with Google Im-

ages to show city pictures related to each SongKick event 66

Figure 4.3: Use of some tools available in EFESTO to manipulate SongKick data

 ... 67

Figure 4.4: The EFESTO Three-layers architecture ... 69

5

Figure 4.5: XML UI Component descriptor: the SongKick service is joined with

YouTube through the Artist attribute .. 72

Figure 4.6: JSON array produced by the Mashup Engine invoked on the UI Com-

ponent descriptor shown in Figure 4.5 with the “U2” query 73

Figure 4.7: Mapping step between the DBpedia-based polymorphic data source

properties and the list UI template .. 76

Figure 4.8: The guides interacting with their workspace: (a) during the briefing

phase using the multi-touch display and (b) during the tour using the tablet. 79

Figure 4.9: A student discussing about Communication Networks by using the in-

tegrated IW on the interactive whiteboard. ... 88

Figure 4.10: A group sketching interaction ideas during the design workshop. ... 89

Figure 4.11: Two students working with their IW on a desktop PC. 89

Figure 4.12: Portfolio with average values of the dimensions PQ and HQ and the

respective confidence rectangles of the system .. 95

Figure 4.13: Mean values of the four AttrakDiff™ dimensions of our system 96

Figure 4.14: Mean values of the AttrakDiff™ adjective-pairs for EFESTO 97

Figure 5.1: Composition of DBpedia polymorphic data source with SongKick art-

ist attribute. .. 102

Figure 5.2: Sub-tree of the DBpedia ontology built by using the SongKick artist

attributes. For each node, the percentage indicates the class coverage 106

Figure 6.1: A group discussing and working with paper prototypes during the elic-

itation study. .. 114

Figure 6.2: Example of Query Broadcasting. ... 119

Figure 6.3: Example of Flying Join. ... 121

Figure 6.4: Example of Aggregation&Visualization: (a) selection of Lastfm as

source; (b) visualization of Lastfm items as pins on Google Maps. 122

Figure 6.5: A group of four participants (not all visible) and the facilitator discuss-

ing during the utilization study. .. 125

Figure 6.6: System SUS score mapping the adjective ratings, acceptability scores,

and school grading scales. ... 127

Tesi%20dottorato%20Giuseppe%20Desolda_27012016.doc#_Toc441665395
Tesi%20dottorato%20Giuseppe%20Desolda_27012016.doc#_Toc441665395

6

List of Tables
Table 2.1: Mashup dimensions. The * indicates the dimensions derived from [34];

the ** indicates the dimension presented in [69] .. 19

Table 2.2: Mashup tool dimensions. The * indicates the dimensions derived from

[1]. ... 30

Table 4.1: Use time and interaction difficulties with the multi-touch display 82

Table 4.2: Number of performed searches and modifications of the workspace

with the multi-touch display... 82

Table 4.3: Frequency and use time of tools .. 83

Table 4.4: Number of performed searches and modifications of the workspace

with the tablet .. 83

Table 5.1: The instance-based semi-automatic annotation algorithm 104

Table 5.2: Candidate classes for annotable attributes of the SongKick data source;

the Class column indicates the DBpedia class associates; the % coloumn indicates

the frequency of each class ... 105

Table 5.3: Accuracy comparison between the baseline and the algorithm 109

Table 6.1: Mann-Whitney U test to assess the effects of genre and expertise on

system usability ... 127

Table 6.2: Details of the Mann-Whitney U test used to assess the effects of genre

and expertise on the interaction mechanisms .. 129

Table 6.3: Details of the Mann-Whitney U test used to assess effects of genre and

expertise on the scenarios easiness ... 130

Table 6.4: Details of the Mann-Whitney U test used to assess effects of genre and

expertise on the scenarios time ... 130

Abstract

7

Abstract
The growing amount of resources available on Internet through Application Pro-

gramming Interface (API) and the opportunities offered by Web 2.0 are pushing

end users to evolve from passive information consumers into information produc-

ers, able to access such resources and manipulate them, in order to generate new

content. This phenomenon demands for new interaction paradigms to enable peo-

ple to access these contents, get them into personal interactive workspaces where

people can integrate and compose them and also create new content to be possibly

shared with other people. In this respect, solutions for service composition like the

mashup tools play an important role as they let users integrate heterogeneous in-

formation that otherwise would be totally unrelated. In such ways, mashups gen-

erate new value.

Several mashup tools proposed so far, the so-called mashup makers, provide

graphical notations for combining services. As compared to manual programming,

such platforms alleviate the composition tasks, but they require an understanding

of the integration logic (e.g., data flow, parameter coupling, composition operator

programming). Studies with users show that mashup tools are still difficult to use

by non-technical users.

The approach investigated in the research presented in this thesis is ground-

ed on experiences reported in literature about new paradigms for mashup compo-

sition and on the lessons learnt on End-User Development (EUD), combining the

advantages of both fields. According to the EUD vision, enabling non-technical

users to create or modify the applications they are going to use requires abstrac-

tions and notations adequate for them. The entire work revolves around the devel-

opment of a mashup platform, EFESTO, that allows the lightweight construction

of integrated, situational workspaces pervasively accessible and sharable through

a variety of devices such as desktop PCs, mobile devices and large interactive dis-

plays. EFESTO supports end users in performing mashups thanks to novel visual

interaction paradigms. EFESTO was iteratively refined during the research and

allowed the validation of the defined models and interaction paradigms.

Furthermore, mashup platforms are general-purpose and not adequate to the

needs of specific application domains, making their use very difficult by end us-

ers. The key point of our research was the creation of a general platform for ser-

vice mashup easily customizable to a specific domain, thus taking advantage of

stakeholders’ domain knowledge, in order to offer a composition process that

makes sense for end users in that domain. In this direction, a first contribution of

Abstract

8

this research is a design methodology based on a meta-design model and a novel

“stratification” of the mashup platform into layers. Moreover, an innovative inter-

action paradigm is proposed that adopts visual notations defined after user studies

based on interviews, focus groups, workshops with users, prototyping testing.

Another contribution is the definition of a polymorphic data source, a rich

source of data built on top of the Linked Open Data cloud that can be dynamically

modelled by the users depending on their specific informational needs. The added

value of this data source is to overcome the limitation of the data sources available

nowadays, which only describe a portion of a domain and often do not include

many details, so that they do not provide all the information that end users might

need.

A further contribution is the integration of the Transformative User eXperi-

ence principles in EFESTO. These principles support more elastic data composi-

tion and exploration tasks. Finally, a novel approach to data mashup on mobile

devices is presented; it uses some cross-device mechanisms that allow end users

to formulate queries and reconfigure the data flow between different mobile de-

vices by physically rearranging them on a desk and/or performing cross-device

touch gestures on their display.

 Introduction

9

Chapter 1. Introduction

 Introduction

10

1.1 Rationale

The problem of facilitating the access to Web services and APIs through visual

user interfaces has been attracting the attention of several researchers in the last

years. An ever increasing number of resources that provide content and functions

in different formats through programmatic interfaces is available, while it is still

difficult for laypeople, i.e., users without expertise in programming, to access and

exploit the available content.

Recent research projects have been dealing with the problem of easing the

creation of effective user interfaces on top of Web services and APIs (e.g., [55]).

They focused on the notion of Web Service Graphical User Interfaces (WSGUIs)

[79], i.e., on a set of mechanisms to enrich the Web service specifications with

annotations that could make easier the definition of visual interfaces. The idea

was to automatically generate the presentation layer, starting from enriched ser-

vice descriptors. Unfortunately, the proposed solutions were only able to dynami-

cally generate dialogs for input and output of structured parameters; this compro-

mised their adoption, especially considering the emerging trend of providing rich

user interfaces that go beyond the provision of forms and tables to query a service

and interact with the query results respectively.

Service composition paradigms have been proposed since the 90’s to create

applications that integrate homogeneous resources. More recently, Web mashup

methods have been proposed to create web applications by using heterogeneous

web resources. Specifically, a mashup is the creation of a web application by inte-

grating data and functions provided by different web services. The most common

example of mashup is a web page created by mashing-up the Google Maps API

with georeferenced data provided by another API, for example data on upcoming

music events. The result of this mashup is an interactive map on which different

markers representing the event location are shown.

Mashups support data exploration processes that go beyond one-time inter-

actions and allow users to progressively seek for information. As studied in [86],

for data retrieval and exploration tasks typically users invoke general-purpose

search engines and/or specialized tools, and then use “their brain” (or suitable

cognitive aids, e.g., annotations or clipboards) for taking note of results to be used

next. Mashups solve (at least partially) these limitations, as they try to accommo-

date users’ needs for data integration within personal, ad-hoc created workspaces.

Despite these advantages, some factors still prevent a wide use of tools to

create mashups, especially by users who are not experts in programming. In fact,

 Introduction

11

while mashups have been identified as a useful means for application develop-

ment by end users [34], so far the research on mashups has largely focused on de-

fining integration technologies and standards, with limited attention on easing the

mashup development process - in many cases mashup creation still involves the

manual programming of service integration. Some user-centric studies also found

that, although the most prominent platforms (e.g., Yahoo!Pipes) tried to simplify

mashup development, they are still difficult to use by non-technical users, who

encounter difficulties with the adopted composition languages [26, 65, 66]. Be-

sides the complexity of the composition paradigm [9], the user interaction for ex-

ploring and manipulating retrieved data is still hard.

1.2 Thesis Contributions

The research described in this thesis has permitted the development of a mashup

platform, EFESTO, which implements an interaction paradigm that enables users

without skills in computer programming to extract content from heterogeneous

services and integrate them into newly created applications accessible through dif-

ferent devices. The platform name is inspired by Efesto, a god of the Greek my-

thology, who realized magnificent magic arms for other Greek gods and heroes.

Analogously, the EFESTO platform aims to put in the hands of the end users

powerful tools to accomplish their tasks. The proposed approach is grounded on

experiences reported in literature about new paradigms for mashup composition

and on the lessons learnt on End-User Development (EUD), combining the ad-

vantages of both fields.

The performed work resulted in several new research contributions. As first

contribution, two models have been proposed: the first one is a meta-design mod-

el, which guides the development of a general mashup platform that can be easily

customized to a specific application domain [9]; the second one is a UI component

model for modelling abstractions on which the novel composition paradigm

adopted by EFESTO is based.

As a second contribution, the EFESTO mashup platform that supports non-

technical end users in performing mashups has been developed and validated

through field studies in the Cultural Heritage and Technology Enhanced Learning

domains [5, 9, 36].

An important factor limiting the use of mashup platforms in real contexts is

the difficulty in finding the information that people actually need. The data

 Introduction

12

sources available nowadays through APIs describe a portion of a domain and of-

ten do not include many details. It is sometimes possible to overcome this limita-

tion by composing different data sources, but in some cases, when the end users’

information need is more specific, no data source could provide it. Thus, a further

novel contribution of this thesis is the definition a polymorphic data source built

upon the Linked Open Data cloud, which overcomes this lack of information and

better satisfies end users’ information needs. This data source is called “polymor-

phic” because it is able to provide mutable information depending on the situa-

tional needs exposed by a given mashup under construction.

The field studies performed during this research revealed some strengths and

weaknesses of our approaches and, in general, of mashup tools. One of the most

important flaws relates to the limited manipulation of the information retrieved by

the user-defined data sources. Transitions across different usage situations, which

imply different functionality to be applied to information, should become possible

without requiring users to switch between mashup tool and other applications.

This means that rigid schemas for information provisioning and fruition, generally

adopted by isolated, pre-packaged applications, have to be overcome by instru-

menting systems with an intrinsic flexibility. As a possible solution, a framework

where mashup composition paradigms are revisited and potentiated through the

notion of Transformative User Experience (TUX) has been introduced and repre-

sents another contribution of this thesis. The goal is to overcome common appli-

cation boundaries by enabling user interaction with information in terms of task

objects (i.e., data elements, their visualization and specific functions used to per-

form a task) within dedicated task environments.

Lastly, considering that currently people are shifting from the use of PCs to

a massive use of mobile devices, a set of interaction mechanisms, both spatial-

aware and cross-device, to perform mashup in situational scenarios by means of

mobile devices has been identified. Data sources can be flexibly combined by

moving mobile devices around on the desk or by performing touch gestures to

quickly express the situational information needs of a group of users. This is the

most recent contribution of this thesis. The approach is still a work in progress,

but the utilization study reported in the thesis shows the power of such interaction

mechanisms.

 Introduction

13

1.3 Research Methods

The methodologies applied in this thesis are grounded in the User-Centered De-

sign (UCD) model which emphasises the importance of taking end users into ac-

count during the iterative system design process. The ISO standard referring to

UCD reports a spectrum of methods that designers can exploit to involve users

[38]. Great importance is devoted to requirements analysis: designers have to

study end users, the tasks they perform and the context in which they operate in

order to better foresee how users might likely use the system under development.

It is also fundamental to test the validity of designer assumptions with regard to

user behavior in real settings tests involving actual users at each stage of the pro-

cess (i.e., requirements, concepts, pre-production prototypes, mid-production and

post-production prototypes), creating a circle of proof back to and confirming or

modifying the original requirements. The main difference from other system de-

sign methodologies is that UCD tries to improve the system around how users

can, want, or need to use the product, rather than forcing the users to change their

behaviour to accommodate the system.

Driven by UCD, the most important activities iteratively performed in this

research are:

 analysis of the state of the art and outline of lacks or not considered as-

pects;

 proposal of solutions to fill the lacks (e.g., models, composition paradigms,

framework) based on user studies, such as elicitation studies, focus groups,

interviews;

 implementation of the proposed solutions;

 validation of the proposed solutions, including models, methods and para-

digms, through user studies, such as field studies and utilization studies.

1.4 Thesis Outline

The rest of this thesis is organised as follows:

 Chapter 2 presents related work about mashups and mashup tools. It first

describes the origins of mashup and then analyses the literature on mashups

by providing a classification of mashups works according to various dimen-

 Introduction

14

sions. Then, it surveys mashup tools, also providing a classification along

several dimensions.

 Chapter 3 describes different models defined during this PhD research. The

first one is a meta-design model that permits the customization of a mashup

platform to a specific domain. This model underlies the creation of software

infrastructures that support EUD activities and knowledge co-creation by the

different stakeholders involved in system design. A more technical model to

guide developers in building mashup tools is also defined. Finally, a frame-

work in which composition paradigms are revisited and potentiated through

the notion of Transformative User Experience is illustrated.

 Chapter 4 illustrates the design and development of a mashup tool called

EFESTO. First, a composition environment for EFESTO customization to a

specific domain is described. Then, a user study to elicit the composition

paradigm implemented in EFESTO is illustrated. Afterwards, a complete de-

scription of EFESTO and its architecture is provided. Finally, the EFESTO

evaluation performed through two field studies and a utilization study is re-

ported.

 Chapter 5 illustrates a new polymorphic data source built upon the Linked

Open Data cloud that is able to provide mutable information with respect to

the composing data sources. First, the motivation to investigate this new data

source is reported. Then, the algorithm to automatically annotate the ‘tradi-

tional’ data sources presented in a mashup tool, which is a mandatory step to

create the polymorphic data source, is described. In the end, an evaluation of

this algorithm and future work with the polymorphic data source are report-

ed.

 Chapter 6 presents a novel approach to mashup data-sources by means of

cross-device mechanisms of mobile devices. Such mechanisms support

groups of co-located people holding different devices to ‘mashup’ infor-

mation that satisfies their situational needs. The elicitation study carried out

to design the cross-device mechanisms is described. A preliminary evalua-

tion carried out during a demo session at an international conference is re-

ported.

Related Work

15

Chapter 2. Related Work

Related Work

16

2.1 Mashup origins

The World Wide Web consortium defines a web service as a software application

identified by a URI, whose interfaces and bindings are capable of being defined,

described, and discovered as XML artifacts. A Web service supports direct inter-

actions with other software agents using XML-based messages exchanged via In-

ternet-based protocols1. This has become an emerging technology thanks to the

possibility to develop automated interactions between distributed and heterogene-

ous applications. In early 2000, researchers started creating Web applications by

integrating data and functions provided by different Web services. The web appli-

cation resulting from service integration was called ‘mashup’. This term was orig-

inally coined in the music where mashup indicates a song created by blending two

or more songs, usually by overlaying the vocal track of one song seamlessly over

the instrumental track of another.

Initially, a large number of web applications were built on the basis of

Google Maps to plot geo-referenced data on the map. One of the ancestor of these

web applications was HousingMaps, a site that overlaid Craigslist apartments and

housing listings on a map, for some 30 US cities plus London [47] (see Figure

2.1). This site became popular because it highlighted the importance to browse re-

al estate on a map; before that, real estate sites only showed lists of properties. It

also promoted the idea that a website could be built by integrating parts of the

Web. However, HousingMaps did not include only web services because it aggre-

gated houses data coming from web services and maps “hacked” from Google

Maps that, at that time, did not provide its APIs yet.

The first mashups were obtained by means of manual programming, but

very soon it became clear the importance of allowing the enormous number of

people who are not programmers to exploit the huge amount of services available

to create mashups, without requiring to program. This new need pushed the re-

searchers to investigate mashup tools, i.e. interactive systems that permit to access

and compose services by exploiting, for instance, visual mechanisms such as

drag&drop. For example, in some enterprises specific mashup tools were adopted

to guide employees in composing web services. This composition is called enter-

prise mashup [51] because users create dashboards for aggregating and synchro-

nizing widgets to access enterprise data and functions.

1 https://www.w3.org/TR/2002/WD-wsa-reqs-20021011

Related Work

17

Figure 2.1: HousingMaps screenshot

One of the pioneers of general purpose mashup tools was Yahoo!Pipes [74],

a visual editor that provided access to services and operators that could be com-

bined into a canvas pane through drag and drop actions. In particular, services and

operators were visualized as visual modules that users could link by means of

‘pipes’ (Figure 2.2). Moreover, Yahoo!Pipes provided a useful debugger for the

users to inspect Pipe output at various stages in the Pipe. The composition results

could be exported in other Web sites. Since August 30th 2015, Yahoo!Pipes has

been dismissed.

Figure 2.2: Yahoo!Pipes example where services and operators are shown as visual modules

and linked by ‘pipes’.

Related Work

18

In the successive years, several mashup tools based their composition ap-

proaches on the Yahoo!Pipes paradigm. However, despite the wire paradigm

seemed very promising for not-technical users, some factors limited a wider adop-

tion of these mashup tools in real contexts. Some user-centric studies found that

their composition paradigms are still difficult to master for non-technical users

because the adopted composition languages do not fit their mental model [26, 65,

66]. This problem pushed researchers in investigating new mashup paradigms

based, for example, on event-driven mechanisms [25] or on natural language pro-

cessing [2].

2.2 Mashup and tools

A book that is a comprehensive reference for mashups, authored by Daniel and

Matera, was published in 2014 [34]. The authors systematically cover the main

concepts and techniques underlying mashup design and development, the syner-

gies among the models involved at different levels of abstraction, and the way

models materialize into composition paradigms and architectures of correspond-

ing development tools. The book takes a balanced approach, combining a scien-

tific perspective on the topic with an in-depth view on relevant technologies.

Some other publications also reported several mashups and mashup tool fea-

tures. For example, a recent review of tools, languages and methodologies for

mashup development is presented in [69]. In this paper the authors identify a set

mashup and mashup tool features, taking into account other surveys and literature

reviews. In [1] the design space of mashup tools has been proposed. The authors

surveyed more than 60 articles on mashup tools, pointing out that only 22 tools

are online. Based on these 22 tools, they proposed a model focused on the main

perspectives occurring in the design of mashup tools.

In the following two sub-sections, we report a set of dimensions useful for

illustrating important features of mashups (Section 2.2.1) and mashup tools (Sec-

tion 2.2.2).

2.2.1 Mashup

In the book written by Daniel and Matera [34], a mashup is defined as an applica-

tion that integrates two or more mashup components at any of the application

layers (data, application logic, presentation layer) possibly putting them into

Related Work

19

communication among each other. In particular, a mashup component is any

piece of data, application logic and/or user interface that can be reused and that

is accessible either locally or remotely. Moreover, mashup logic is the internal

logic of operation of a mashup; it specifies the invocation of components, the con-

trol flow, the data flow, the data transformations, and the UI of the mashup.

This definition highlights three of the most important mashup aspects. First,

the concept of components, i.e. the atomic parts that can be integrated to create a

mashup. Second, the application layers in which mashup is performed, i.e. data,

logic and presentation layers. Last, the type of mashup the user can perform like

control flow, the data flow, the data transformations, and the UI of the mashup. In

this book these aspects are presented in a mashup classification model.

In Table 2.1 the mashup dimensions we consider most significant are report-

ed. The firsts five (labelled with *) are taken from the classification model pre-

sented in [34]. The dimension Type of Resource (labelled with **) is taken from

[69]. The last two dimension were added, because they are relevant from our point

of view.

Table 2.1: Mashup dimensions. The * indicates the dimensions derived from [34]; the ** in-

dicates the dimension presented in [69]

Dimensions Categories

M
a

sh
u

p

Mashup Type *
Data mashups – Logic mashups – User Interface

mashups – Hybrid mashups

Component

Types *

Data components – Logic components – UI com-

ponents

Runtime

Location *

Client-side only – Server-side only – Both client

and server – Cloud

Integration Logic *
 UI-based integration – Orchestrated integration –

Choreographed integration

Instantiation

Lifecycle *
Stateless- Short-living – Long-living

Type of

Resources **
Public - Private

Domain-Specific

Languages for

Mashups

Enterprise Mashup Markup Language (EMML) –

Web Services Description Language (WSDL)-

Open Mashup Description Language (OMDL) –

Mashup Component Description Language

(MCDL) Custom grammar

Runtime Device Desktop – Mobile – Smart Object – Multi-device

Related Work

20

Mashup Type

Following the Media-View-Controller (MVC) software architecture, a mashup

can be classified as data mashup, logic mashup and UI mashup, depending on

which layers the mashup is spanned.

The data mashup refers to the access to different data sources (e.g. Web

services, RSS feed) and their composition by means of operations like join, union,

filter, sort. The result is a new integrated result set typically published as a new

data source. An example is a data source that provides upcoming musical events

as a result of a merge of datasets of different Web services like last.fm, SongKick

and Eventful. A tool that supports data mashup is Damia, a lightweight enterprise

data integration platform where users can create and catalogue high value data

feeds for consumption by situational applications [3]. It consists of a browser tool

that allows for the specification of data mashups as data flow graphs using a set of

operators, a server with an execution engine and an APIs for searching, debug-

ging, executing and managing mashups.

The logic mashup regards the integration of functionality published by logic

components. An example of logic mashup is the integration of the New York

Times RSS feed, which provides a list of recent news (data component), with the

Google Translate API that takes these news and produces their version in another

language (logic component). The translated results can be saved to a new data

source by means of a data storage service. A tool that supports the logic mashup is

Microsoft’s Popfly: it allows users to create web pages, program snippets and

mashups using the Microsoft Silverlight rich internet applications runtime and the

set of online tools provided. It was discontinued on August 24, 2009 [57].

The User Intarface (UI) mashup consists in combining independent Web

services with a native UI into a common UI. A typical example of UI mashup is a

dashboard built by integrating different services shown in separated widgets. For

example, in Netvibes [68] users can aggregate different widgets to visualize, for

example, New York Times news, weather forecast information, a Gmail client, a

YouTube search widget, a Facebook wall, a Google Calendar, and so on. The

added value of this mashup is the possibility to centralize the functionalities and

data that typically users access during their computer-supported activities.

Lastly, the Hybrid mashups involve multiple layers of the application ar-

chitecture. A tool that supports the creation of hybrid mashups is PEUDOM [61].

With this tool, users can aggregate into their dashboard different widgets, each of

them connected to a service. Moreover, a synchronization between two or more

Related Work

21

services can be established according to an event-driven paradigm and drag&drop

mechanisms. For example, last.fm and YouTube Web services, visualized in two

separated widgets, can be synchronized in order to automatically retrieve

YouTube videos each time a click occurs on a singer name in last.fm results.

With respect to this dimension, the mashup tool proposed in this thesis cre-

ates hybrid mashups. In fact, end users can aggregate different web services in

their workspaces and can exploit data mashup operations to build complex data

sources combining different web services.

Component Types

A mashup component is a reusable software module that can be involved in a

mashup. Different technologies are used to build a component, for example SOAP

and RESTful Web services, RSS Feeds, UI widgets, etc. The strong heterogeneity

among the integrated technologies is one of the peculiarity of mashup that, differ-

ently by the traditional service composition where homogeneous resources are in-

volved, deals with heterogeneous resources.

Similarly to the Mashup Type dimension, also the mashup components are

classified into three different classes that span in the three application architecture

levels, i.e. data components, logic components and UI components.

Data components provide read and write capabilities on remote or local da-

ta sources. They are typically RSS and Atom feeds, XML or JSON file, CVS file,

crawled web data, micro-formats, and SOAP or RESTful services (when used as

services to retrieve data). Data components can be static or dynamic. A data com-

ponent is static if it can be invoked without any parameter, as in the case of RSS

or Atom feeds. On the contrary, dynamic components can be invoked formulating

parametric queries. These components are called dynamic since they provide re-

sults depending on the query parameter values. In both cases, a UI is needed to in-

teract with them, i.e. to invoke them and insert parameters (in case of dynamic

components) and to visualize the results.

Logic components expose business logic or functionalities. They are typi-

cally SOAP and RESTful services and JavaScript APIs or libraries. An example

of logic component is the Gmail API2 that allows to send an email by invoking a

RESTful method parametrized with recipient email, subject and text, and sender

2 https://developers.google.com/gmail/api/

Related Work

22

parameters. Despite these components offer a powerful opportunity to create

mashups, they just provide function and thus they have to be completed by pro-

gramming a proper UI to interact with them to provide input or visualize the out-

put.

The UI Components are services provided with a user interface. They are

typically JavaScript UI libraries, Java portlets, code snippets and extracted UI

components. In many cases, they also expose functions and data, as in the case of

Google Maps API3 where its integration in a web page provides not only the map,

but also function to calculate routes between two points of interest or to search a

place by typing an address.

With respect to this dimension, the mashup tool proposed in this thesis ex-

ploits Data components and UI components. The first ones are used to retrieve da-

ta from web services (e.g. Wikipedia API) while the second ones are used to visu-

alize data, for example Google Maps API is used to plots geo-referenced data re-

trieved by compatible APIs, as, for example, the upcoming musical events provid-

ed by the last.fm API.

Runtime Location

This dimension is related to the environment in which a mashup is executed. In

the original dimension identified in [34], the authors propose three locations: cli-

ent, server, or client-server. In the last years, the spreading of the cloud technolo-

gy also influenced the mashup, opening new opportunities to run the mashup in a

more powerful location.

The client-side mashup regards the composition of mashup components

without the use of remote resources. An example is the mashup of JavaScript li-

braries to visualize data extracted from data components that read CVS files. In

this case, all the components, libraries and data, reside on the client. An advantage

of this mashup is that no Internet connection is required to run the mashup. How-

ever, only mashup components that do not require internet can be used, limiting

the number of services that can be integrated.

The server-side mashup is the integration of mashup components available

on a remote server. For example, a server-side mashup could be the composition

of the Twitter API (data component) with a service for sentiment analysis (logic

3 https://developers.google.com/maps/

Related Work

23

component). The first one takes in input a keyword and produces a list of tweets

that contain the keyword. The second one takes the list of tweets and the keyword

and produces an index on how much Twitter users like the topic associated to that

keyword. This mashup is like a black-box (Twitter -> Sentiment Analysis) that

can be invoked by providing a keyword to indicate a topic; the execution of this

mashup produces an index on the topic indicated by the typed keyword. An ad-

vantage of this mashup is that it can be invoked from different clients since the re-

source reside on a server. However, an internet connection is required.

The client-server mashup is a fusion of the previous two runtime locations

since mashups components reside on both client and server. In this case, the

mashups can take advantage from the peculiarities of client and server.

A cloud mashup is an evolution of the client-server mashup. Cloud tech-

nology is opening new opportunities to dynamically balance the computing and/or

storing resources on different servers. As in server-side mashup the composition

resides on a remote machine, in the cloud mashup the composition, and in particu-

lar the components and their execution, are distributed on different cloud provid-

er's servers. For example, in the last years, researchers and IT companies are im-

plementing tools to access and compose smart things. Typically, the goal of these

tools is the automation of processes carried out by the users (e.g., each time user

come into his home the Wi-Fi router switch on). With these tools users can estab-

lish a large number of automation and each of them could require a continual

communication with smart objects or web services, thus the scalability of the tool

becomes a critical issue. To this aim, cloud technology allows the dynamical bal-

ance of the processes on the cloud.

With respect to this dimension, the mashup tool proposed in this thesis cre-

ates server-side mashups since the execution logic, data and UIs reside on a re-

mote server. We opted for the server-side mashup to foster the mashup execution

independently from specific hardware configurations and devices; in fact, the end

users can execute their mashups on different devices such as smartphones, laptop

PCs and large interactive displays [6].

Integration Logic

This dimension regards how mashup components communicate among them. In

the classification reported in [34] the author identified three different types of

logics: UI-based, Orchestrated and Choreographed.

Related Work

24

The UI-based integration is a simple aggregation of UI components in the

same user interface. One of the first tools that proposed this integration was

iGoogle4, a personal web portal launched by Google in May 2005 and dismissed

on November 2013. This tool was a typical example of UI-based integration since

users could aggregate into their dashboards different widgets that act without

communicate among them.

The Orchestrated integration logic is a centralized composition logic that

‘orchestrate’ the execution of the components involved in the mashup. This logic

can also act as a proxy to mediate communication among components.

The Choreographed integration logic refers to mashups where compo-

nents are able to send and receive messages directly between them, without the

need of a proxy like in the orchestrated integration logic. These types of mashups

are characterized by a communication infrastructure as a message or event bus

that is in charge to propagate an event raised by a sender component to a receiver

component. An example of this logic is implemented in PEUDOM where users

can aggregate widgets in UI-based integration logic, also defining a communica-

tion between them to create a ‘choreography’ of widgets [61].

With respect to this dimension, the mashup tool proposed in this thesis gen-

erates mashups with UI based and Choreographed integration logics. In fact, the

mashups are an aggregation of widgets that included web services visualized by

means of visual templates (UI based, see Section 3.3). Moreover, the task con-

tainers introduced in the mashup tool (see Sections 3.3 and 3.4) provide the possi-

bility to “act” on the retrieved contents, for example to collect&save favorites, to

compare items, to plot data items on a map, to inspect full content details, or to ar-

range items in a mind map to highlight relationships. To do this, the end users

have to drag&drop content from a widget into a container: when an item is

dropped into the container, the widget sends a message to the container with the

raw data of the dragged content. These data are used by the container to visualize

the content in a different fashion (Choreographed).

Instantiation Lifecycle

This dimension concerns how long a mashup runs in its location. In [34] the au-

thors identified three types of lifecycle: stateless, short-living and long-living.

4 http://www.igoogleportal.com/

Related Work

25

A stateless mashup does not have an internal state during its execution. A

typical example is the data mashup. If a user creates a new resource Y as the union

of n data sources, only the composition schema of Y resides in the runtime loca-

tion along the time, but the mashup runs only when it is invoked by the user,

without persisting during the user session. Only the mashup results persist along

the time. This is the reason why it is called stateless.

A short-living mashup lives just during the time of a user session. This is

the case, for example, of a UI mashup. In fact, let us assume that a user is using

Netvibes to define his dashboard [68]. Every time the user opens his dashboard,

the components are instantiated, but when the user session is closed the compo-

nents are deallocated.

A long-living mashup survives across different user sessions. This is a

common state in the logic mashups that instantiate a process. For example, the

mashup tool called IFTTT allows the creation of ‘recipes’ (an alias for mashup) to

throw actions when events are caught. For instance, with a user-defined recipe,

every time a YouTube video is liked on the user account, the video name is saved

in a Google Drive sheet [48]. This recipe survives across the user sessions since it

listens an event (a like on a YouTube video) to throw an action (save video in

Google Drive) even if the user is not logged in IFTTT.

With respect to this dimension, the mashup tool proposed in this thesis gen-

erates short-living mashup. In fact, each user can save and execute his mashups

during different sessions but the mashup components are deallocated each time

the mashup tool is closed.

Type of resources

A mashup can be seen as an evolution of service composition where only homo-

geneous services could be composed. One of the peculiarity of mashup is the pos-

sibility to integrate heterogeneous resources in a single application. Two main

types of resource, i.e. public and private, have been identified.

Public resources are components that publish data and function on the

Web. The most of these resources are Web services available through SOAP or

RESTful technology.

SOAP (Simple Object Access Protocol) was designed as an object-access

protocol in 1998 by Dave Winer, Don Box, Bob Atkinson, and Mohsen Al-

Ghosein for Microsoft, where Atkinson and Al-Ghosein were working at the time.

It is a protocol specification for exchanging structured information in the imple-

Related Work

26

mentation of web services in computer networks. It uses XML Information set for

its message format, and relies on other application layer protocols, most notably

Hypertext Transfer Protocol (HTTP) or Simple Mail Transfer Protocol (SMTP),

for message negotiation and transmission. Because of the verbose XML format,

SOAP can be considerably slower than competing middleware technologies such

as REST architectural style.

REST (REpresentational State Transfer) has emerged as a SOAP alternative

to develop Web services. In fact, REST-based Web services provide important

advantages with respect to SOAP. First, requests and responses are shorter than in

SOAP, since it requires an enveloped XML-based format in every request and re-

sponse. Second, the bandwidth required to transport requests and responses is

lower than that of SOAP. Last, memory and processing resources required in or-

der to process requests and responses are less compared with those of SOAP.

Thanks to these advantages, today REST is the standard the facto to develop web

APIs or web services, RSS, and Atom data services.

Another category is the private resources, i.e. the data and function used by

single users or communities of users (e.g. companies). Usually, these data are

stored in files like CSV, JSON, XML and HTML or in databases. A novel type of

private resources are the smart things that today provide users with data and func-

tions such as heartrate, body temperature, IP camera audio/video streaming, do-

motic sensors and actuators, and so on. Smart things data and functions can be

used and integrated by means of their APIs.

With respect to this dimension, the mashup tool proposed in this thesis pro-

duces mashups that include both public and private resources. In the first case,

RESTful web services can be used in the mashup while in the second case CSV

files and databases can be included.

Domain-Specific Languages for Mashups

As described in the previous sections, a mashup can be developed by involving

different types of mashup components, integrating them following different

logics, running it in different environments, and so on. This strong complexity

motivated the proliferation of Domain-Specific Languages (DSLs) to describe

mashups, for example EMML, Orc, YQL, OMDL and MCDL that are the ones of

the most popular languages. In [34] the mashup programming language is not in-

cluded in the mashup model but the authors deal with it presenting pro and cons

of some languages. Since we consider the mashup programming language an im-

Related Work

27

portant mashup aspect, in this thesis we included it as a mashup dimension. In the

following, a description of some languages is reported. Further details about other

languages are reported in [34, 69].

One of the most popular language is the Enterprise Mashup Markup Lan-

guage (EMML), an XML-based language to describe the mashup components in-

tegration. In particular, with EMML it is possible to define which components are

involved, how to invoke them and how to compose them as data or logic mashup.

The EMML schema needs to be processed by an EMML engine that interprets

EMML statements and creates the final mashup rendered in UIs or exported to

other applications.

Similar to EMML, the Web Services Description Language (WSDL) is an

XML-based interface definition language that is used for describing the function-

ality offered by a web service. The acronym is also used for any specific WSDL

description of a web service (also referred to as a WSDL file), which provides a

machine-readable description of how the service can be called, what parameters it

expects, and what data structures it returns. It thus serves a purpose that corre-

sponds roughly to that of a method signature in a programming language.

Figure 2.3: EMML example to access to a CSV file and loop on its results in order to retrieve

plants for each country and append to a memory-store each result, applying a 5 sec-

ond pause between each item to obtain different timestamps [73].

Related Work

28

Another popular language is Yahoo Query Language (YQL), an SQL-like

language created by Yahoo! as part of their Developer Network that allows query-

ing, filtering, and joining data across Web services. YQL propose SQL statements

to retrieve data (SELECT), filter query results (WHERE), combine filter expres-

sions (AND, OR), join tables, page or limit results, write (INSERT), update

(UPDATE), and delete (DELETE) data. JavaScript can be included to be executed

by the YQL Web service.

select *

from rss

where url in (

 select title

 from atom

 where

 url='http://example.org')

Figure 2.4: Example of YQL query to Aggregate and filter multiple RSS feeds

Another language is Orc, designed for programming process-oriented

mashups. With respect to the previous languages, it requires user to have prior

knowledge of functional programming language to write a mashup application,

thus it is not very easy to learn. In fact, it is a Web scripting language to create

Web service mashups, but it can be used as a general purpose programming lan-

guage for concise encoding of concurrent and distributed applications.

include "search.inc"

each(results)

 <results<

 Prompt("Search for:") >term>

 (Bing(term) | Google(term))

Figure 2.5: This Orc script starts a Bing search and a Google search

simultaneously and prints the first set of responses

The Open Mashup Description Language (OMDL) is a simple way to ex-

port mashups consisting of pages, layouts and widgets for use in other applica-

tions. Alternatively, OMDL can be used as part of a workflow for authoring

mashups for users, starting with a conceptual design, adding the structure, then

specific widgets and layouts, and then importing the description into a platform

such as Apache Rave.

With respect to this dimension, a simplified version of the EMML language

has been introduced. The reason is that the composition logic implemented in the

EFESTO mashup engine (see Section 4.5.3) refers only to a small sub-set of the

composition operators available in EMML.

Related Work

29

Runtime Device

At the beginning of the research on mashups in early 2000, only desktop de-

vices have been used to compose and run mashups. In the following, the spread-

ing of mobile devices and smart objects opened new challenges in running

mashups on these devices. Since this aspect affects the creation and use of a

mashup, in this thesis the runtime device is considered as a dimension for a

mashup.

In the last decade, mobile devices appeared and pushed researchers to inves-

tigate mechanisms to build and execute mashups on them, opening new challeng-

es like the possibility to execute and distribute a mashup on a set of mobile devic-

es. For example, a mashup runnable on a desktop PC, large interactive displays

and tablets was developed during this thesis (see Section 4.6.1). Depending on

each device, the mashup assumed different aspects and functionality to accommo-

date the device peculiarities and limitations.

In the recent years, a completely new types of devices are appearing, the so-

called smart devices. These technologies are opening new opportunities to ex-

ploit mashup in a new fashion since smart things are typically available on the

web through RESTful interfaces. Recent tools allow users to automatize processes

that involve smart things. For example, with Node-RED [81] it is possible to reg-

ister smart things through their REST interfaces and link them in a graph repre-

sentation where each thing is a node and their connections are ‘wires’. For in-

stance, a user can connect two personal wearable devices: a smart bracelet that

tracks the heartbeat and a smart watch. Thanks to Node-RED, the user can estab-

lish a connection that produces a warning on the smartwatch every time the heart-

beat overcome a threshold, useful to warn user during sport activities.

The last type of location is the multi-device setting, i.e. the possibilities to

distribute the mashup on completely different devices, like the ones previously

described. For example, the SmartComposition approach [54] enables the end us-

ers to easily create multi-screen mashups in terms of different widgets distributed

and synchronized on different devices like PC, smartphone, smart TV. For exam-

ple, a teacher can create a distributed mashup to present his lesson with a laptop

connected to a projector and deliver additional information to participants’ mobile

devices.

With respect to this dimension, the mashup tool proposed in this thesis pro-

duces mashups that can be executed on desktop PCs, tablets or a large interactive

display (multi-device). In fact, thanks to the abstract representation of the mashup

Related Work

30

in an EMML-like language, each device can instantiate the mashup in an ad-hoc

manner.

2.2.2 Mashup tools

Mashup tools are interactive systems that assist users in developing mashups, i.e.

web applications that reuse different resources such as web services. In the last ten

years there has been a growing amount of mashup tools, characterized by different

features. With the aim of enabling non-programmers to build mashups, one of the

most important feature is the interaction paradigm offered to users.

The survey in [1] proposes a model of the mashup tool design space, built on

the basis of the identified design issues. In this section, we describe the dimen-

sions that, in our opinion, well characterize mashup tools. They are reported in

Table 2.2, indicating with * the dimension derived from the design issues in [1].

Table 2.2: Mashup tool dimensions. The * indicates the dimensions derived from [1].

Dimensions Categories

T
o
o

l

Targeted

end users *

Non Programmers - Local Developers - Expert Pro-

grammers

Automation

degree *
Full Automatic - Semi-Automatic - Manual

Liveness

Level *
1 – 2 – 3 – 4

Interaction

Paradigm*

Editable Example – Form based – Programming by

example – Spreadsheets – Visual DSL – Visual Lan-

guage (Iconic) – Visual language (Wiring, Implicit

control flow) - Visual language (Wiring, Explicit

control flow) – WYSIWYG – Natural Language

License Open Source - Commercial

Runtime

environment
Desktop – Mobile – Cloud

Supported

Resources

RESTful – SOAP – smart things – file – database –

CSV – excel – smart things

Targeted end users

In terms of programming skills, the end users range from non-programmers to ex-

perienced programmers, with in the middle professional end-users without pro-

gramming skills, but interested in computer and technology, also called local de-

Related Work

31

velopers [67]. Typically, tools for experienced programmers are very powerful but

less usable, on the contrary tools for non-programmers have simplified mecha-

nisms that sacrificing the expressive power of the tools, as summarized in Figure

2.6.

Non-programmers are users without any skill in programming and repre-

sent the majority of web users. The tools they are interested in are the ones that

don’t require to learn/use programming language and technical mechanisms

common for ICT experts and engineers (e.g. use of logical operators, complex

process flows). Thus, non-programmers should be provided with tools that limit

their involvement in the development process to small customizations of prede-

fined mashup templates, or execution of parametrized mashups. An authoring tool

for non-programmers has been described in [43]: it supports the development of

adaptive user interfaces that reacts to contextual events related to users, devices,

environments, and social relationships. In particular, non-programmers can define

the context-dependent behavior by means of trigger / action rules.

Local developers are users with knowledge in ICT technology and software

usage without having skills in computer programming. Typically, this target of

users is willing to explore software and thus tools can provide composition func-

tionality where mashups can be assembled from scratch by composing predefined

components or by customizing and changing existing examples and templates. To

do this, mashup tools for local developers have to provide a high level of abstrac-

tion that ideally hides all the underlying technical complexity of the mashup de-

velopment. An example is the system presented in [32] where the author proposes

a new perspective on the problem of data integration on the web, the so-called

surface web. The idea is to consider web pages UI elements as interactive arte-

facts that enable the access to a set of operations that can be performed on the ar-

tefacts. For example, a user can integrate into his personal web page a list of vide-

os gathered from YouTube and he can also append a list of Vimeo videos. This

data integration can be improved by means of filtering and ordering mechanisms.

These operations can be achieved, for example, by pointing and clicking elements

(YouTube and Vimeo video lists), dragging and dropping them into a target page

(e.g. personal Web page), choosing options (filtering and ordering).

The programmers are users with an adequate knowledge of programming

languages. They are the only users that can compose a complex, rich of features,

and powerful mashups by means of tools that provide also Web scripting lan-

guages for developing more complex and customized mashups.

Related Work

32

With respect to this dimension, the mashup tool presented in this thesis is

strongly oriented to non-programmers and local developers. In fact, the main goal

of this thesis is to enable non-technical users to easily perform mashup, providing

them with a composition paradigm that fits their mental model.

Automation degree

This dimension refers to how much the mashup creation can be supported by the

tool on behalf of its users. For this reason, the author of [1] identified two catego-

ries: semi-automation and full-automation. A new category, manual, has been in-

troduced to indicate tools without support in mashup creation.

Figure 2.6: A representation of tool expressive power with respect to the required program-

ming skills of users

Tools that support a semi-automated creation of mashup partially support

users, providing low levels of guidance and assistance. A semi-automated tool re-

quires users to have more skills, but guarantees many degrees of freedom in creat-

ing a mashup that satisfies user needs.

A full automation in mashup development reduces the direct involvement

of users in the development process since users are strongly guided and assisted in

Related Work

33

the process, with the role of supervisory of just to provide input or validate

mashup results. These tools require a short learning curve and decrease the effort

in mashup development. However, these facilities limit the possibility to create a

mashup that fits all the user needs. An example of full-automated tool is Natural-

Mash, a tool that allows users to express in natural language what services they

want into their mashup and how to orchestrate them [2]. To ensure the accuracy of

the expressed user queries, NaturalMash narrows the user in a controlled natural

language (a subset of a natural language with a limited vocabulary and grammar).

The manual category refers to those tools that do not provide any support to

the users during the mashup creation. For example, Yahoo! created a console5 to

formulate queries in a YQL language to perform data-mashup. In this tool, no

help and assistance are given to the users because they have to formulate their

queries following the YQL syntax. If the query is right expressed than the JSON

or XML results is produced, otherwise a syntax error is shown.

With respect to this dimension, the mashup tool presented in this thesis sup-

ports a full automation degree. In fact, the tool composition paradigm is grounded

on wizard procedures that guide the end users in creating a widget on top of a web

service or in composing different web services by means of operations like join or

union.

Liveness Level

The concept of liveness for visual languages presented in [80] was adopted in the

mashup domain [1]. In particular, the authors of [1] used the four liveness levels

to express the tools complexity.

The level 1 is the Flowchart as ancillary description: in this case tools are

used to compose a mashup as a non-runnable prototype that is not directly con-

nected to any kind of runtime system. This prototype has just a user interface, but

does not implement any functionality. If on one hand these tools don’t require

technical or programming skills, one the other hand an execution environment is

necessary to execute the prototype. Microsoft Visio enables the creation of proto-

type mashups. The resulting prototypes can be completed with data and executed

by Microsoft Excel [88].

5 https://developer.yahoo.com/yql/console/

Related Work

34

The level 2 is the executable flowchart: tools in this category produce

mashup design blueprint with sufficient details to give it an executable semantics.

The consistency (logical, semantical or syntactical) of the produced mashups can

be verified. However, the development of mashup with these tools requires skills

in programming since users need to define low-level technical details and thus

constraint their use only to programmers. For example, Activiti6 is a lightweight

workflow and Business Process Management (BPM) Platform characterized by

features such as modeller, validation, and remote user collaboration.

The level 3 is the edit triggered updates: in this case mashup tools are char-

acterized by the development of mashups that can be easily deployed into opera-

tion. Users produce their mashups without spending too much effort in the manual

deployment typically by using two environments: one for the mashup editing and

another one for mashup execution. The deployment of mashup under development

in the editing environment could be obtained, for example, by clicking a run but-

ton that produces a deployment in the execution environment. An example of a

mashup tool with these features is JackBe Presto, a mashup tool characterized by

a design environment to model the mashup and the runtime environment used for

debugging and monitoring purposes.

The level 4 is the Stream-driven updates: it is assigned to those tools that

support live modification of the mashup code, while it is being executed, without

differences between editing and execution. In this way, the mashup development

is very fast and does not require particular programming skills. This approach was

implemented in DashMash, a mashup tool that allows to create and synchronize

web services by means of an event-driven paradigm [25] without distinction be-

tween editing and execution time.

With respect to this dimension, the mashup tool described in this thesis sup-

ports live modification of mashup since it blends into a single environment both

the editing and the execution phases (level 4 - Stream-driven updates). In fact, the

end users edit and run their mashups in the same environment, the tool exactly,

without switching between two or more different environments. This mechanism

is in line with our goal of proposing a mashup tool for non-technical end users.

6 http://activiti.org/

Related Work

35

Interaction Paradigm

One of the most important aspects that affects mashup tool adoption is the interac-

tion paradigm to compose the mashups. Actually this dimension is called Interac-

tion Technique in [1]. This is one of the most critical aspects that limited the wide

adoption of mashup tools in the last years, since the interaction paradigm pro-

posed by several tools was not suitable for non-technical people. In the following,

the most adopted interaction paradigms are reported.

The Domain Specific Language class includes technical interaction tech-

niques since it refers to script languages targeted to solve specific problems for

specific domains. In fact, these languages are characterized by textual syntax,

sometimes similar to existing programming languages. Obviously, since these

languages are very similar to programming languages, they require users a strong

knowledge and skills. An example is Swashup, a Web-based development envi-

ronment for a textual Domain-Specific Language (DSL) based on the Ruby on

Rails framework (RoR) [62].

A simpler but less powerful alternative is the class of visual programming

languages, i.e. programming languages that use visual symbols, syntax, and se-

mantics. In [1], the authors identified two sub-dimensions of visual programming

languages: the visual wiring languages and the iconic visual languages. In the

case of wiring languages, mashup tools visualize each mashup component or each

mashup operation (e.g. filtering, sorting, merging) as a box that can be wired to

other boxes. The mashup tools adopt in most cases the visual wiring mechanism

since these are the most explicit thanks to the one-to-one relationship between the

control flow and data from one activity to another and visual boxes wired to each

other. Tools that implement iconic visual languages translate objects of mashup

language in visual icons. In this way, if the icons are properly designed, users are

facilitated in understanding how to compose a mashup.

The class of WYSIWYG (What You See Is What You Get) interaction

mechanisms permit to create and modify a mashup on a graphical interface with-

out any need to switch from an editor environment to an execution environment

(similar to the Liveness Level 4). These tools are very useful and suitable for non-

programmers since users have the mashup creation under control. However, these

mechanisms sometime represent a constraint since users cannot access to ad-

vanced features like filtering and conversion that are typically hidden in the tool

backend and thus non available to the users.

Related Work

36

An alternative is the class of Programming by Demonstration interaction

techniques that allow to program a computer by giving an example of a particular

task. Typically, these interactions are very useful to reduce or remove the need to

learn programming languages and therefore they are also adopted in the mashup

tools’ context. Whit these techniques, users can ‘show’ to the mashup tools how a

mashup should be, the tools are then in charge to convert the given example in a

runnable program, i.e. a mashup.

Another class of techniques, similar to the previous one, is the Program-

ming by Example Modification that consists in allowing users to modify mashup

instead of starting from scratch. If the tool provides an adequate set of examples,

in most cases the customization of one of the available mashups requires a small

effort by users.

An alternative class of interaction technique is the Spreadsheets, one of the

most popular end-user programming approaches to store, manipulate and display

data. Tools that implement spreadsheets are oriented to data mashup, but typically

produce data visualization thus they cannot build a mashup with an own user in-

terface.

The last example is the form-based interaction. Tools that adopt this inter-

action ask users to fill out forms to create an object or to edit an already existing

one. Since the form filling is today a common practice in the Web for all kinds of

users, mashup tools that implement this technique are easy to be used by a wide

range of users. However, these tools cannot produce complex mashups.

With respect to this dimension, the mashup tool described in this thesis pro-

vides a WYSIWYG interaction mechanism to make more simple the mashup ed-

its. In fact, during the wizard operations that assist the users in editing their

mashup, all the web services details are always visible and under the control of

the end users in a WYSIWYG fashion.

License

Several mashup tools are conceived as research projects published in public re-

pository and/or available as runnable tools on a site. However, also commercial

products appeared over the time, thus, regarding the license perspective, two types

of tools can be identified: open source and commercial.

In the case of open source tools, the community of users is composed by

projects contributors, i.e. programmers that participate in the tool development,

and by end users, i.e. people that just use the tool. As common in many open

Related Work

37

source projects, support and quality of mashup tools are sometime quite low since

they born as research projects and there are no adequate funds and interests in

maintain and update the projects along the time.

In the case of commercial tools, the development and update of the tools are

performed by ICT companies that provide these tools for free or by paying. For

example, in the case of Netvibes [68], the tool can be used for free to aggregate

general web services or by paying from agencies and enterprises providing them

advanced features like the possibilities to sell social dashboards to clients (agen-

cies) or use personal data inside the dashboard (enterprises).

With respect to this dimension, the mashup tool described in this thesis is

the results of an academic research and thus released as open source software.

Runtime environment

Similar to the device location dimension presented in the previous section, differ-

ent devices can be used to create a mashup with a tool. The desktop PCs are the

most common environments on which mashup tools run since they are equipped

with wide screens that offer enough space to visualize mashup components.

However, in some cases, also mobile devices are used to create mashup. For

example, the Atooma7 app transforms a smartphone in a ‘personal assistant’ since

the users can automate all the manual operations they usually perform with their

phone, e.g. combine Wi-Fi, Mobile Data, Facebook, Twitter, Instagram, Gmail,

and other services. In particular, with the Atooma app the users can simply create

automations exploiting an event-action paradigm that allows to define rules fol-

lowing the syntax “IF something happens DO something else”.

With respect to this dimension, the mashup tool described in this thesis runs

on different environments that include tablets, desktop PCs and large interactive

displays. The tool ‘fits’ the device on which it runs, optimizing the UI and func-

tions depending on the hardware peculiarities and constraints (e.g. display size,

interaction methods, etc.).

Supported resources

This dimension is related to the type of resource dimension identified in the

mashup dimensions. In fact, in order to create a mashup with different services,

7 https://www.atooma.com/

Related Work

38

mashup tools have to support different type of services as the ones previously

identified (e.g. RESTful and SOAP). More type of resources the tool is able to

support, more flexible and powerful the tool is.

With respect to this dimension, the mashup tool described in this thesis im-

plements a mashup engine that permits the mashup of different data sources such

as RESTful web services, CSV files and databases. The modularity of this engine

allows to easily integrate the tool with other types of data sources.

 Defined Models

39

Chapter 3. Defined Models

 Defined Models

40

3.1 Introduction

This chapter illustrates the models that clarifies and systematize the main concep-

tual contributions of this PhD research. In particular, the first contribution is a me-

ta-design model that depicts the stratification of a mashup platform into layers, to

foster its customization to specific domains and thus facilitate its adoption by non-

technical people. The second model focuses on the components of a mashup tool

and is specifies the main abstraction that drive the development of mashup tools.

The last model refers to a framework for mashup composition paradigms revisited

and potentiated through the notion of Transformative User Experience. The inte-

gration of these principles aims to overcome rigid schemas for information provi-

sioning and fruition, generally adopted by isolated, pre-packaged mashup tools.

3.2 A Meta-Design Model to Customize a Mashup plat-

form to a Specific Domain

The overall objective of the research presented in this thesis is to investigate mod-

els, methods and architectures to empower people, who are not software develop-

ers and have diverse needs, to create personal, interactive and pervasive work-

space by integrating heterogeneous contents and artifacts.

The research is driven by two problems that limited the mashup spreading

over the time: first, the complexity of composition paradigm, as demonstrated

during studies with users (e.g. [65]) and second the high generality of the pro-

posed mashup tools [26, 65]. With respect to the last aspect, the existing mashup

platforms are usually general-purpose tools that are not adequate to the needs of

specific application domains. Therefore, it is very important to identify methods

and techniques to customize these platforms to specific domains in order to facili-

tate their adoption by non-technical people, as discussed in [26, 65]. For this rea-

son, our research started with the definition of a meta-design model that permits

the customization of our general mashup platform to a specific domain. Our mod-

el is inspired by meta-design principles presented in [7, 30, 41] and it is based on

the Software Shaping Workshop (SSW) model described in [28, 29] .

3.2.1 Meta-Design principles

A meta-design process is characterized by two main phases. The first phase

consists of creating the design environments that allow system stakeholders to

 Defined Models

41

participate in the design (meta-design phase). Most of these stakeholders are non-

technical people. Thus, they use software environments adequate to their skills

and to the tasks they have to perform. The second phase consists of the design of

the final applications, carried out as joint work by the various stakeholders, who

collaborate through their design environments (design phase) [7, 30]. Thus, pro-

fessional developers (software engineers) face new challenges, since they have to

create software environments that can in turn empower non-technical people to

shape the software they use, without obliging them to become programmers.

The proposed approach addresses all such lines of action, since it is princi-

pally aimed to empower people to create personalized interactive environments

for information fruition. This is also in line with the so-called culture of participa-

tion, to which a lot of attention has recently been devoted [37, 40, 50]: it promotes

a shift from consumer cultures, where produced artifacts are passively consumed,

to participatory approaches that greatly exploit computational media to support

collaboration and communication, providing users with the means to become co-

creators of new ideas, knowledge and products that can satisfy their specific needs

[71]. Indeed, we propose a redefinition (and also a seamless fusion) of roles that

go beyond the conventional user-designer dichotomy, in a context where system

design and system execution are interwoven to let users create, immediately exe-

cute and iteratively evolve their own applications.

3.2.2 The Meta-Design Model

Our approach for the mashup tool customization to a specific domain is contextu-

alized within a meta-design approach, based on the Software Shaping Workshop

(SSW) model [28, 29]. This model underlines the creation of software infrastruc-

tures that support EUD activities and knowledge co-creation by the different

stakeholders involved in system design. All stakeholders of an interactive system,

including end users, are “owners” of a part of the problem: software engineers

know the technology, Human-Computer Interaction (HCI) experts know human

factors, graphic designers know how to create an appealing graphical design, do-

main experts know the application domain and end users know their goals. Most

of these stakeholders are non-professional developers. In order to contribute to

system design by bringing their own expertise, all these figures need different

software environments, specific to their culture and skills. The professional devel-

opers involved in traditional design actually become meta-designers, who create

software environments, called Software Shaping Workshops (in short SSWs or

 Defined Models

42

workshops, intended as a virtual laboratory whose users shape software), through

which the other stakeholders, acting at some point as designers, contribute to

shaping software artifacts. They create and modify elements (objects, functions,

user interface widgets) of the system of interest and exchange the results of their

activities to converge to a common design and to allow end users to adapt the

software to fit their specific needs. In a similar way, various communities of

stakeholders are involved in the different phases of the workspace life cycle.

With the adoption of this model for the mashup tools customization, three

different design layers have been identified. At each layer, activities of meta-

design are performed, or a mix of design and use activities, depending on the dif-

ferent stakeholders involved. Indeed, professional developers perform meta-

design, since they create the software environments (SSWs) for all the other

stakeholders involved in the design and implement and/or modify the software ar-

tifacts that require programming efforts (top level in Figure 3.1). In order to facili-

tate the mashup by end users, in our preliminary studies we soon realized that the

mashup tools (bottom level in Figure 3.1) have to be customized to their needs.

This introduces another layer of activities to be performed by other stakeholders

(middle level in Figure 3.1). Professional developers and domain experts collabo-

rated in meta-design activities to customize the general-purpose tools, by register-

ing relevant resources, implementing adequate visual templates and packaging re-

sources for the end users, e.g., the professional guides. Such collaboration is es-

sential for a successful customization.

The customization to a new application domain is usually performed once; it

is possibly updated to satisfy specific needs emerging later, e.g., to register or to

combine further resources. Thus, the work of more stakeholders is required in or-

der to create tools for non-technical users. This is true in various contexts, as dis-

cussed in [22, 42]. Some stakeholders perform meta-design activities (e.g., profes-

sional developers, service management experts), even if they are non-technical

people (e.g. domain experts), since they create environments and tools that allow

others to be de-signers; end users usually perform a mix of design and use activi-

ties.

With this model, starting from general-purpose mashup tools, we identified

how some modelling abstractions, which guide the integration of contents within

container visualizations, enable different stakeholders to package ad-hoc resources

and to co-create mashup through intuitive visual paradigms. In particular, end us-

ers are facilitated in their composition activities by the availability in the platform

of domain-specific resources and user interface templates, which guide their activ-

 Defined Models

43

ities by providing basic visual elements that they can easily manipulate. Moreo-

ver, thanks to the adoption of platform independent modelling abstractions, the

structure of the composed applications is specified in automatically generated

schemas that can be deployed on multiple devices, thus promoting the pervasive

fruition of the created mashup and also facilitating their sharing [4]. Such a sepa-

ration of concerns, together with the possibility to extend the platform with ad hoc

visual templates and the ease of packaging ad hoc content resources, facilitates the

platform customization to specific application domains.

Figure 3.1: Meta-design approach to mashup creation. The bottom layer outlines the compo-

sition environments for the end users (deployed on different devices) and the middle

layer the composition environments for domain experts: the top layer instead high-

lights the role

3.3 Model for UI Component Mashup

After the definition of the meta-design model, a mashup platform to validate our

model during two field studies (Section 4.6) has been implemented. For the design

and development of our platform, we took into account the model presented in

[24], where the authors defined the modelling abstractions on which their compo-

sition paradigm is based. This model has been chosen as starting point for our

model since it fosters the creation of mashup for non-programmers. During the re-

search, our model has been iteratively refined by adding new components on the

basis of our research directions, e.g. a different way to integrate service data by

 Defined Models

44

means of more powerful data mashup operations as join and union (Section 4.3),

the use of task containers that integrate the Transformative User eXperience prin-

ciples (Section 3.4), and the polymorphic data sources based on Linked Open Da-

ta (0). The new model is depicted in Figure 3.2. In particular, with respect to the

original model reported in [24], in the new model the components are:

 coloured white if they have the same meaning;

 filled with oblique lines if they have different meanings;

 coloured in grey if they are removed in our model;

 filled with vertical and horizontal lines if they are added in our model.

Figure 3.2: A model of the components of our mashup

In the following, a formal definition of each component is reported. The def-

initions about the white components are the same of [24] and are reported to sim-

plify the reading and model understating.

Definition 1. UI Component. A UI Component uic is a self-contained soft-

ware module that is bound to one or more services. It also provides data and/or

functionality and it is equipped with its own user interface (UI) (its concrete

view).

 Defined Models

45

Figure 3.3: Example of UI Component that show musical events on Google Maps

A UI Component also exposes an event-driven logic characterized by a set E

of events that can be generated by the user interaction with its concrete view, and

a set A of actions that some other components’ events can activate to change its

status when a synchronized behavior within a composite application is needed.

The specificity of UI Components, that characterizes them with respect to

other components, for example Web services, is the presence of a UI as a means

for the users to interactively navigate and manipulate the component’s content and

to invoke business logics operations. Therefore, besides adding a presentation lay-

er, which is missing in Web and data services, the interaction with the UI in a

sense replaces the invocation of Web services operations through APIs protocols.

Definition 2. UI Mashup. A UI Mashup can be defined as

UI_Mashup =< UIC, C, PT>,

where UIC is the set of UI Components involved in the mashup, C is the set

of components’ couplings that determine the synchronized behaviour of compo-

nents within the mashup and PT is the presentation template adopted to organize

the UI of the mashup. Component couplings are defined based on an event-driven,

 Defined Models

46

publish-subscribe integration logic [25, 90]. Couplings are channels for inter-

component communication, based on which the occurrence of a published event

causes the execution of a subscribed action, thus a state change in the subscribed

component. Therefore, couplings can be defined as in the following.

Definition 3. Components’ Coupling. Given two UI Components uics and

uict a coupling synchronizing their behavior is a pair

c=< uics (<output_parameters>), uict (<input_parameters>)>

representing the subscription of an action of the target UI Component, uics,

to an event raised by the source UI Component, uict, and more specifically to the

output parameters the event might transport.

Definition 4. Presentation Template. Given a set of UI components in a

UI_Mashup, a presentation template PT is a set of abstracted UI representations

that describe the visual organization of the UI components in the user interface of

different devices. For example, in Section 3.2.2 we specified that, thanks to the

adoption of device independent modelling abstractions, the structure of the com-

posed applications is specified in automatically generated schemas that can be de-

ployed on multiple devices. The translation from the abstract mashup representa-

tion to the concrete UI is performed thanks to a specific pt that is different with

respect the device that executes the mashup.

a b c

Figure 3.4: An example of different presentation templates used to execute the same mashup

on different devices. In a the mashup runs on a desktop device. In b the mashup runs

on a large interactive display. In c the mashup runs on a tablet.

Definition 5. Data Component. A Data Component is an abstract represen-

tation of a resource that can be used to retrieve data. In particular, dc is a tuple

dc=<t, I, O>

where t indicates the type of resource, for example Data Source and Poly-

morphic Data Source in our model. I indicates the set of input to query the re-

sources. O indicates the set of output features, for example, the instance attributes.

 Defined Models

47

Definition 5.a Selection. Given a data component dc, a selection is a unary

operator defined as:

σC (dc) = {r ∈ dc | result r satisfies condition C}.

where r is a result obtained by querying the data component dc and C is a

condition used to query dc.

Definition 5.b Join. Given a couple of data components dci =< epi, qi , A> and

dcj =< epj, qj , B>, a Join is a binary operator defined as:

dci |><|ai dcj = {(a1, …, an, σC (dcj)) | C: qj = ai }

Definition 5.c Union. Given a couple of data components dci =< epi, qi , A>

and dcj =< epj, qj , B>, a Union is a binary operator defined as:

dci U dcj = { x | x ∈ dci or x ∈ dcj }

Definition 6. Data Mashup. A Data Mashup is a data integration performed

between different data components. It is a pair

dm =< DC, O >

where DC represents the set of data components involved in the composi-

tion; O is the set of operations (e.g. join and union) performed between data com-

ponents in DC. This component represents one of the first improvements per-

formed to the original model presented in [24] where data mashup was conceived

just as a visual aggregation of different data sources by means of union and merge

sub-templates. In that case, the data mashup could not be reused with other tem-

plates since the users need to perform another mashup. In our model, the data

mashup follows the traditional vision of data mashup where the result is a new in-

tegrated result set published as a new data source. This new data source can be

used in the platform as a new source that can be visualized by using visual tem-

plates.

Definition 7. Data Source. A Data Source is a triple

ds =< ep, Q, A>

where ep represents the service endpoint, e.g., the URI of a RESTful ser-

vice, and Q represents the set of pre-defined parametric queries Q over the data

services. Moreover, ds is characterized by a set A={A1…An} of attributes that

characterizes each query result.

 Defined Models

48

To enable the invocation of a data source at runtime, its endpoint and the

queries are specified in a descriptor created when the component is registered into

the platform. The registration is supported by a form-based user interface where

the user specifies the needed configuration data; configuration files are then gen-

erated. For example, the Last.fm data component used in our reference scenario is

defined on top of the Last.fm RESTful API. Its registered endpoint is the URI

http://ws.audioscrobbler.com/2.0/ where the API is published. Q includes some

parametric queries, for example, the one based on an operation to retrieve music

events located in a specified city. Queries are expressed as HTTP GET requests,

for example, “?meth-

od=geo.getevents&location=location_str&api_key=lastfm_api_key.” At runtime,

requests are instantiated by considering actual parameter values specified during

the composition or also during the component execution, for example, the value

“Chicago” for the location_str parameter and the API key 0697XXX.

Definition 8. UI Template. A UI Template can be characterized as the triple

uit =< type, VR, TE >

where:

- type is the template class (e.g., list, map, chart) selected by the user;

-VR is a set of visual renderers, vrk , i.e., elements that provide visual place-

holders for single data attribute A in of dc. The way vrs are displayed in the final

application is specific for each UI Template (e.g., a POI in a map, a text field for a

list-based UI). However, at a higher level of abstraction, each vr can be consid-

ered merely as a “receptor” of data attributes.

-TE is the set of events that at runtime can be raised by the selection of the

template visual renderers. The VI components making use of the template in-

herit this set of events.

Definition 9. VI Schema. A Visual Integration Schema is an abstract de-

scription, i.e., independent of any specific visualization layout chosen for data

display. It represents the way the visual elements that compose a selected concrete

view in the final application display fused data items coming from multiple ser-

vices according to the visual mapping operated by the users during the component

design phase. The visual elements users can associate data with are specific for

each UI template (e.g., a POI in a map, a text field for a list-based UI). However,

at an abstract level, each visual element can be considered merely as a “receptor”

of data attributes. A VI Schema can be formalized a tuple:

 Defined Models

49

vis =<Q, uit, M>

where Q is the set of queries that the user selects from each involved Data Com-

ponent to gather the VI Component data; uit is the user-selected UI Template as-

sociated to the component for the visualization of its integrated data set; M repre-

sents the set of mappings between data items, extracted through the queries in Q,

and visual renderers characterizing the uit; it specifies the way multiple result sets

are integrated into the selected uit. Therefore, independently of the adopted UI

Template, a VI schema is represented by tuple mappings, M,

M =< m1, m2, . . . , mn >

where each mk represents the mapping of data belonging to the results of a query q

∈ Q onto the visual render vrk .

The VI schemas need to be adequately codified in order to be deployed in

the mashup tools. In literature there are different languages that support this prob-

lem. One of the most popular language is the Enterprise Mashup Markup Lan-

guage (EMML), an XML markup language for creating enterprise mashups that

consume and integrate data from variety of sources, often performing logical or

mathematical operations. In the platform presented in this thesis, an XML based

language inspired by EMML has been introduced (see Section 2.2.1). The VI

schema has been divided in 4 descriptors: 1) to described the data mashup (Figure

3.5); 2) to describe the data sources in terms of inputs and outputs (Figure 3.6); 3)

the UI template descriptors (Figure 3.8); 4) the mapping between the data mashup

and UI template (Figure 3.7).

In Figure 3.5 it is reported an example of our XML language. This file re-

ports a UI component, in particular a data mashup consisting in a union between

two services (YouTube and Vimeo) and a join of the unified services with a third

service (Wikipedia). In the XML file, the tag unions has two children, services

and shared. The services tag summarizes the unified services. Each service is re-

ported in a service tag. In particular, the service tag has the attribute name that in-

dicates the name of the data source. This value is used by the mashup tool to re-

trieve the source details to perform the query. The shared tag describes the align-

ment of the attributes of the unified data sources. For example, it has two children

called shared_attribute, each of them with two children, attribute, that represent

the service attributes that are mapped in a UI template.

 Defined Models

50

Figure 3.5: An example of UI component descriptor codified with our XML language

Each service reported in the service tag of our VI schema is detailed in a

separate service descriptor XML file. In Figure 3.6 the YouTube service de-

scriptor is reported: inside the root tag called service, there are the tags source, in-

puts, params, attributes and flags. The first three nodes represent all the infor-

mation useful to query a data source. The fourth node, attributes, described the at-

tributes that detail each result. The last node, flag, is introduced to solve the heter-

ogeneity problem of the data sources. In fact, the data sources typically send the

results by formatting them in a JSON file but the list of results if formatted in dif-

ferent ways (e.g. inside a json array).

 Defined Models

51

Figure 3.6: An example of service descriptor codified with our XML language

Another XML descriptor introduced in our model regards the UI Template.

In Figure 3.7 the list UI Template has been reported. It is characterized by a set of

sub-UI templates (different types of lists). In particular, the root node, template,

has an attribute name that indicates the template name. The root has a set of chil-

dren that describe different alternatives to visualize the UI template.

Figure 3.7: An example of mapping descriptor codified with our XML language

 Defined Models

52

The UI template descriptor is linked with the VI schema through the XML

mapping descriptor. An example of mapping is reported in Figure 3.8. In this de-

scriptor, the root node, mappings, has two attributes: templatetype and templat-

ename. The first one recall the name of a UI Template (e.g. list), the second one

the name of its sub-template (list_A).

Figure 3.8: An example of UI template descriptor codified with our XML language

Definition 10. VI Component. Visual Integration Components are created

by the users mapping visually result sets extracted by one or more data compo-

nents to UI templates. A VI component can be defined as the tuple

VIcomp =< vis, E, O >

where vis is a Visual Integration Schema while E and O are the sets of

Events and Operations exposed by the component to make it comply with the

event-driven logic needed for UI synchronization. E ⊆ templEUItemplate, that is,

E is derived from the events associated with the UI template (see Definition 8).

For example, for the My events component, E includes the selection of the list

items in the merge subtemplate. O ⊆ selQ, that is, O is derived from the set of

queries exposed by the involved components. In the My events component, an op-

eration that updates its status is, for example, the one that queries the underlying

data sources searching for events based on a specified city name.

Definition 11. RDF Graph. A novel contribution of this thesis is the possi-

bilities to use the Linked Open Data cloud as new data source. In 2009, Tim

Berners-Lee defined Linked Data as “a set of best practices for publishing and

connecting structured data on the Web” [18]. The goal of the Linked Data project

is to publish data in a way readable by a human and by an automatic agent. The

idea is to use the HTTP URIs to denote things (e.g., a person, a city, an organiza-

tion) and to provide useful information about them by exploiting RDF8 standard.

In particular, with RDF each thing is coded by a set of triplets in the form

t = <Subject, Predicate, Object>

8 http://www.w3.org/RDF/

 Defined Models

53

The subject (S) indicates the thing and it is an URI. The object (O) can be a

literal or another thing identified by a URI. The predicate (P) indicates what kind

of relation exists between subject and object, e.g., a name of a person (in the case

of a literal), or a friendship with another person (in the case of another resource).

The predicates are identified by a URI and come from vocabularies used to repre-

sent information about a domain. The LOD are Linked Data distributed under an

open license that allows its reuse for free. At the time of this thesis, there are more

than 1000 KB available in the LOD cloud. An example of a RDF graph is report-

ed in Figure 3.9.

Figure 3.9: A graph representation of a RDF triplets.

The representation in RDF language of the graph in Figure 3.9 is:

<?xml version="1.0"?>

<rdf:RDF

 xmlns:ex="http://example.org/"

 xmlns:foaf="http://xmlns.com/foaf/0.1//"

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

 <rdf:Description rdf:about="http://example.org/John">

 <foaf:knows>

 <rdf:Description
rdf:about="http://example.org/Bob">

 <foaf:knows
rdf:resource="http://example.org/Alice" />

 </rdf:Description>

 </foaf:knows>

 </rdf:Description>

</rdf:RDF>

Nowadays, one of the widest knowledge base (KB in the following) in the

LOD cloud is DBpedia (the RDF version of Wikipedia). The DBpedia English

version describes 4.58 million things, out of which 4.23 million are classified in

its ontology. In the DBpedia ontology, there are 685 classes. Thanks to the availa-

bility of this huge amount of information and their semantic structured in the

 Defined Models

54

DBpedia ontology, DBpedia has been chosen as starting point to create the data

sources based on LOD described in Chapter 5.

DBpedia, as well as all the knowledge bases in the LOD cloud, is an RDF

graph T that can be defined as:

T = { t | t ∈ S x P x O }

Definition 12. Polymorphic data source. A polymorphic data source is a

novel type of source built on top of a knowledge base in the LOD cloud (DBpedia

in our case). In particular, given a set of ontologies ONT and a knowledge base

represented as RDF graph T, ∀ s ∈ S instance of a class C of ont ∈ ONT, a poly-

morphic data source is defined as:

PDS = { t ∈ T | ∃ st instance of C}

where C is a class of an ontology ont ∈ ONT. In other words, a PDS is like a

selection of triplets of a LOD KB whose subjects are labelled with a specific class

C of an ontology ONT. For example, starting from DBpedia, it is possible to build

a source where all the instances of a musical artist are available. As explained in

0, it is possible to build this PDS from scratch or extending a data source by

means of join operator.

Definition 13. Task Container. Task containers are visual elements whose

role is to supply task-related functions for manipulation and transformation of task

objects (data items retrieved from a source) along user-defined task flows. A task

container can be defined as a couple:

tc = <TF, TV>

where TF is the set of task functions for manipulation and transformation of

task objects along user-defined task flows while TV is the set of UI templates to

visualize the tasks objects. This aspect has been described in more detail in Sec-

tion 3.4 where a framework for TUX principles integration in a mashup tool has

been illustrated.

3.4 A Framework for Actionable Mashups

The last model reported in this chapter is a framework for mashup composition

paradigms re-visited and potentiated through the notion of Transformative User

Experience (TUX). In fact, the field studies performed during this research (Sec-

tion 4.6) revealed some weaknesses of our approaches and, in general, of mashup

 Defined Models

55

tools [5], related to the manipulation of the information retrieved by the user-

defined data sources. The integration of TUX principles aims to overcome rigid

schemas for information provisioning and fruition, generally adopted by isolated,

pre-packaged mashup tools.

This section describes how to extend the coverage of mashups by augment-

ing information exploration, generally operated on top of mashup data sets, to-

wards more active prosumption (i.e., genuinely merging “production” and “con-

sumption”) and sense making. The important feature we focus on is to support the

accomplishment of sophisticated sense making tasks on the visualized information

thanks to additional manipulations driven by task semantics. In other words, we

aim to enable a kind of active sense making, in which the presented information

can not only be viewed differently and in meaningful ways towards the gaining of

insights, but moreover transformed effectively towards the actual accomplishment

of task goals. In this regard, the visualizations of data retrieved from data sources,

that in a mashup environment can occur by means of UI templates, are enriched

by augmenting the UI templates with the notion of TUX task containers, i.e., ele-

ments whose role is to supply task-related functions for manipulation and trans-

formation of task objects along user-defined task flows [16]. As a consequence,

through task containers and their particular task semantics, users are empowered

to interact with the displayed information in a contextual manner, thus raising in-

formation in mashups to the level of task objects the user can act upon.

As represented in Figure 3.10, system objects (i.e., data items), resulting

from the mashup, and their visualizations within UI templates (UI objects) can be

promoted to the role of task objects that in turn can be endowed with and treated

according to the various task functions offered by the containers in which they are

cast. Task objects - not simply data items or their representation in UI templates -

become the very objects of user interaction, with the result that the users are not

only allowed to consume the information displayed by the mashup, but they are

also enabled to manipulate and transform it, i.e., to prosume it, in accordance with

the tasks they intend to perform. In principle, mashups – without considering

TUX principles – can be equipped with some functionality that has task-semantic

character, exceeding the mere modification of data visualizations. Yet, in such

cases the task semantics would reside in the application implicitly and in a rather

hard-wired fashion. For example, a component for the visualization of products

could be enriched with a functionality to send emails to vendors. However, this

would be a hard-coded function, which the users could not adapt flexibly into

their spontaneously defined task flow. According to TUX, it would be instead

 Defined Models

56

possible to apply the communication capability to other object types, for example

to submit inquiries on the products to consumer forums.

Figure 3.10 illustrates the organization of a framework supporting this new

task-centric perspective on the organization of an EUD system based on the

mashup paradigm. Modules supporting mashup composition and execution are in-

tegrated with modules for the manipulation of task objects according to TUX

principles. Typical mashup modules are exploited to create the base of UI objects

to be then manipulated as task objects. Within the mashup engine, the data access

module extracts data from the services on which the system relies on (by means of

the mashup components [34]). The integration module interprets user composition

actions performed at the UI level and creates an execution model determining how

system objects have to be integrated. The results, i.e., the integrated system ob-

jects, are rendered as UI objects within UI templates. Such UI objects provide the

actionable information on which task functions can be applied. In this sense, UI

objects are promoted to the level of task objects by virtue of the functionality pro-

vided by the task-semantic layer. In Figure 3.10, the dotted-dashed line connect-

ing a UI template (used for rendering various views of UI objects) and a task con-

tainer (hosting task objects) makes this promotion explicit.

The task-semantic layer then provides for the identification of the current

task contexts, based on the interpretation of user actions as they manipulate task

objects by applying container-specific task functions; it also supports the casting

of task objects within and across various task containers. At the UI level, a task

container “wraps” mashup UI templates, so that the user can act on the displayed

UI objects by means of the task-related manipulations. This results in treating UI

objects as task objects by virtue of their interpretation through the context, which

is defined and provided by each task container. Different UI templates within a

task container can be used for providing different views of the same task objects

without changing however the semantics of the objects as implied by the task con-

tainer. Changes of views would in fact still be in line or even supportive of the

particular task semantics.

It is worth noticing that, in order to associate different task semantics to data

extracted from heterogeneous resources, it is important to maintain continually the

relation of the elements representing the task objects to their original context. Ac-

cording to the framework shown in Figure 3.10, establishing and maintaining the

identity of task objects (as data returned by a given resource) is supported by the

task context engine, in particular by its identity management component.

 Defined Models

57

Figure 3.10: Overall organization of the framework supporting the interaction with mashups

enhanced according to TUX principles

Another challenge is to deal with the need of users to endow objects with

meanings that depend on the task they choose to accomplish. From the system

perspective, a contextual relationship management module (see Figure 3.10) al-

lows task objects to be augmented by users with subjective meanings and func-

tions that relate to the task semantics of the selected containers where the interac-

tion with the objects takes place. More specifically, this is handled by the generic

function of casting, which implies that task objects are exposed to the aforemen-

tioned container-specific task semantics.

In any concrete scenario, users may interact with task objects in a sequence

which spans multiple containers, along spontaneously defined trajectories that

however have to keep track of the sequence of the various task semantics a given

set of task objects was subjected to. The overall process can thus be considered a

kind of “sequential casting” that in the framework of Figure 3.10 is managed by

the transition management module.

 The EFESTO Platform

58

Chapter 4. The EFESTO Platform

 The EFESTO Platform

59

4.1 Introduction and Motivation

Mashup technology claim to be oriented to end users revealed unrealistic because

the adopted composition languages are not actually suitable for end users [65, 84].

Recent studies found that, although some prominent platforms (e.g. Yahoo!Pipes)

simplify the mashup development, they are still difficult to use by non-technical

users [26, 65, 66, 91]. This might be due to the fact that the research on mashups

has primarily focused on technologies and standards, with little attention on eas-

ing the mashup creation process, which often involves the manual programming

of service integration. Mashup makers provide graphical user interfaces for com-

bining mashup services [33, 39, 87]. With respect to manual programming, such

tools make easier mashup composition tasks. However, to some extent they still

require an understanding of the integration logic (e.g. data flow, parameter cou-

pling, etc.).

With the intent of overcoming the limitations identified in literature, we cre-

ated EFESTO (EFesto End uSer composition plaTfOrm), a platform for the End-

User Development of mashups. Efesto was a god of the Greek mythology, who

realized magnificent magic arms for other Greek gods and heroes. Analogously,

the EFESTO platform aims to put in the hands of the end users powerful tools to

accomplish their tasks. Our platform, in fact, is characterized by a paradigm for

the exploration and composition of heterogeneous data sources that tries to ac-

commodate the end-user mental model for a lightweight data integration within

workspaces. As described in Section 4.3, the paradigm was designed taking into

account the results of some elicitation studies performed to identify the service

composition end-user mental model. It was also validated during two field studies

in specific application domains, namely Cultural Heritage [9] (Section 4.6.1) and

Technology Enhanced Learning [5] (Section 4.6.2) and, finally, in a utilization

study (Section 4.6.3). These studies also highlighted new (unexpected) require-

ments, most of them implemented in the current version of EFESTO.

4.2 A Customization Environment for EFESTO

According to the meta-design model described in Section 3.2, an environment for

customizing EFESTO to a specific domain has been developed. This customiza-

tion is performed by means of different activities like services (also called Data

Component in the model depicted in Section 3.3) registration, service attributes

 The EFESTO Platform

60

renaming, service attributes selection, development of visual templates and/or task

containers.

Service registration is performed by specifying basic properties to invoke the

service. For example, in case of RESTful services, at registration time the service

URI and the value of some search keys need to be specified. Service registration

is facilitated by visual forms that guide the user to insert the data needed, so that,

even if it is usually performed by technology experts, domain experts or end users

themselves could do it with some guidance or after some training. The service

registration produces a service descriptor (see Section 4.5).

During service registration, the customization environment permits also to

rename the data attributes, which very often have not self-explanatory names.

Moreover, since some of the many service attributes are useless for the user needs

in a certain domain, only a sub-set of attributes are made available.

Another important activity in the customization environment is the devel-

opment of visual templates (also called UI Templates in the model described in

Section 3.3). Thanks to the visual templates, in our mashup tool the user can visu-

alize the service raw data and integrate data gathered from different data compo-

nents, by means of two integration operations: join and union. Further details

about these integrations are described in Sections 4.4 and 4.5, where the EFESTO

implementation and architecture are described.

In the customization environment containers to support sense-making tasks

with the mashup tool can be developed. As described in Section 3.4, containers

provide functions to process data; such functions are strictly related to the current

context, as informed by the task actually performed by the users.

4.3 Design of a new composition paradigm for EFESTO:

an elicitation study

Very few studies are reported in literature on understanding end-user requirements

for accessing and integrating different services. The most significant study is re-

ported in [84]: three separate focus groups were organized with the purpose of

comparing three design alternatives of service-based systems enabling end-user

composition. For the design of EFESTO, in our study we approached the problem

differently. We purposely did not ask end users to assess pre-defined composition

paradigms for not introducing biases. Rather, we tried to elicit through discussion

their mental model and attitude on accessing and composing services. Through in-

 The EFESTO Platform

61

terviews and a focus group, participants discussed on how to compose data and

services. The identified requirements were then used in three design workshops to

model a composition process and to create some preliminary prototypes. In the

following sub-sections, we will illustrate the study, outline the results and shortly

describe the preliminary prototypes.

4.3.1 Method

The study was based on interviews and focus groups, in which participants dis-

cussed about composing data and services. It was decided that no prototype

should be shown, in order to avoid influencing participants. An HCI researcher

conducting the interview or the focus group would make an introduction to ex-

plain what is a service and the motivations to compose services and/or data com-

ing from different sources. Starting from the data mashup operations we wanted to

accomplish through EFESTO, the discussion was focused on three main tasks:

1) union of data items taken from different sources, 2) join of data items returned

by a source with data items of other sources, 3) visualization change of data items.

Questions for both interviews and focus group were defined in order to col-

lect information from users about these three important tasks. Questions related to

tasks 1 and 2 were formulated in two steps: a) illustrating, through a simple sce-

nario that users could easily understand, how data from different sources are actu-

ally combined using a web browser, and b) asking the question on how the inter-

viewee would like to use an application allowing him/her to perform such activi-

ties. For example, to explain the join task, the following scenario was illustrated

(interviewees said that they knew SongKick, thus this service was used in the sce-

nario): “A user (who is keen on music) daily uses SongKick to know the concerts

that are held in his/her geographic area. From the browser, he/she accesses Song-

Kick and looks at the results. The user does not know an artist who is giving a

concert next week, thus he/she opens another website or service, like Wikipedia,

to search for the artist discography”. A new Wikipedia search has to be done for

every artist. Then, it is shown how this is currently performed and, eventually, it is

asked: “How would you like to interact with an application that allows you to

combine data from more than one source at the same time, in order to avoid jump-

ing among different sites?”. Finally, in order to investigate the task 3, i.e. visuali-

zation change, the interviewer/moderator shows the interface of a popular web

service (YouTube, SongKick, etc.) and askes the participant if he/she would like

 The EFESTO Platform

62

to see the obtained results with a different visualization and how this task should

be performed.

Nine single interviews and a moderated focus group were conducted. We

took notes of users’ comments, opinions and discussions and collected all the

sketches created during the study. Based on the collected information, at the end

of users’ requirement gathering the interaction process has been identified during

a design workshop. In two successive design workshops, user interface prototypes

of the composition platform were created and refined.

4.3.2 Participants and procedure

9 people (5 female) aged 19-60 years old were interviewed. The interviewees had

different cultural background. They included: a high-school student, two universi-

ty students in different disciplines, a telecommunication technician, a dance

teacher, two lawyers, an archaeologist, a business consultant.

The focus group involved 5 people (1 female) aged 22-25 years old; three of

them were graduated in Economics, two were students in Engineering. All partic-

ipants had low-medium knowledge of computer use. All were familiar with Inter-

net but they had no experience in programming.

The interviews and focus group followed the same procedure. Initially, a 10-

minute presentation to introduce the interview goal has been given: the platform

scope and the meaning of a web service were illustrated by showing examples us-

ing the Web. Then, the discussion started by asking the participants questions re-

lated to the three tasks illustrated before. Participants answered by providing

comments and, in the meanwhile, sketching interface elements and layout, show-

ing how each one would like to carry out each task, e.g. through drag and drop ac-

tions, clicking on the mouse right button, selecting an icon, etc.

4.3.3 Results and discussion

The participants commented about platform benefits in their own daily life with a

lot of enthusiasm. For example, a dance teacher said she frequently prepares cho-

reographies and she happens to look for videos on YouTube and Vimeo. She

clearly said that the platform would simplify the search, allowing her not to jump

from a web page to another.

 The EFESTO Platform

63

All participants said that they would like to use very simple and familiar in-

teraction mechanisms, e.g., clicks of buttons and icons, menu item selection, drag-

and-drop. Indeed, they specified these mechanisms in their sketches. They all in-

dicated that the results coming from each source would be shown in a resource

box in their own workspace.

On the basis of the participants’ answers and sketches, two proposals actual-

ly emerged for the union of data sets taken from different sources. 10 out of 14

participants said that they would like to perform the union through a button, la-

belled with “+” or “Add” and included in the title bar of the resource box to be ex-

tended. This button opens a popup window proposing a wizard procedure that

guides the user through the steps for combining two sources. The 4 remaining par-

ticipants proposed that the platform interface could provide a search box in the ti-

tle bar of the source to be extended, in which the user types a keyword for the cat-

egory of content the new source should provide, e.g., video, audio, text. A drop-

down menu is visualized listing the name and, possibly, an icon of the retrieved

sources, e.g., YouTube and others. The user drags the source of interest from the

ones listed and drops it into the box of the source to be combined.

Three alternatives were identified from participants’ answers and sketches

for the join of two or more data sources. The user started from a resource box

showing data items coming from a specific source, e.g., Facebook. The first alter-

native, proposed by 6 participants, was to provide a button near each field of a da-

ta item, whose click activates another wizard procedure. 4 out of 14 participants

proposed an alternative, in which the user positions the mouse cursor on the data

item he/she wants to extend. The user clicks on the mouse right button to open a

context menu showing a list of target sources from which he/she selects the source

of interest. The third alternative was suggested by 4 participants: the platform

shows a search box to search for the new source to be joined (a mechanism simi-

lar to the one used for the union operation). The user then drops one selected

source in the field of a specific data item.

Finally, all participants expressed the desire to select the visualization of the

returned items through a button opening a popup window where alternative visu-

alizations are shown, so that the user can select the preferred one.

The study results showed that users like to be guided step by step in the

composition of data sources. Participants indeed suggested a wizard procedure for

performing both union and join of data. This is in line with the study reported in

[84], where participants preferred the system-assisted composition approach over

 The EFESTO Platform

64

the other two, which were based on the definition of control flow and data flow

respectively. The wizard, indeed, hides complex technical details and guides the

users in selecting data sources and in combining or linking data items. On the oth-

er hand, mechanisms strictly based on parameter coupling, as it is for data and

control flow approaches, are the “programmer’s way of building software arti-

facts”, which does not necessarily match the end users’ mental models ([65, 91]).

At the end of user-requirement gathering, during a first design workshop the

team identified the interaction process. In the two successive design workshops,

prototypes of the enabling user interface were created and refined, also consider-

ing the results of both heuristic evaluations and tests with two end users. These

prototypes are described in the next section.

4.4 Interacting with EFESTO: an example

Our mashup tool is the result of an iterative process of design and evaluation

phases grounded on the meta-design model presented in Section 3.2 and started

with the design study for eliciting the composition paradigm (described in previ-

ous section), and then refined with the integration of TUX principles (see Section

3.4) and the polymorphic data source (see Chapter 5.) to satisfy the requirements

emerged during our field studies (see Section 4.6).

The EFESTO user interface has been implemented by using Primefaces, an

open source User Interface (UI) component library for JavaServer Faces (JSF)

based applications. It is deployed on a remote Apache Web server and a Mysql

database is used for the user account management.

With respect to the classification framework reported in Section 2.2.2,

EFESTO is a WYSIWYG mashup tool since it blends the design and execution

phases into the same environment. For this reason, we called workspace the space

in which the user creates and use the mashup.

To illustrate the main features of EFESTO, a usage scenario is now intro-

duced. Let us consider an end user, Michael, who is going to organize his summer

holidays. Michael has not yet decided where to go between London and Madrid

but, regardless the destination, he would like to attend a concert during his holi-

days. For this reason, Michael uses EFESTO to retrieve and integrate various in-

formation (i.e., to create mashups) about music events. Michael starts looking for

pertinent services among those registered in the platform. A wizard procedure

guides him to make a selection from a popup window where services are classi-

 The EFESTO Platform

65

fied by category (e.g., videos, photos, music, social). Michael selects SongKick, a

service that provides information on music events given an artist name. He also

selects a map UI template for displaying the retrieved information. The aim of

Michael’s activities in the EFESTO workspace is indeed to create some widgets,

called UI components in our model illustrated in Section 3.3, that visually render,

in a chosen format, data extracted from selected data sources. As SongKick data

are geo-localized, Michael decides to visualize the retrieved data on a map.

Figure 4.1: Mapping between the SongKick data attributes and UI template fields

As shown in Figure 4.1 (circle #1), the SongKick data attributes are visual-

ized in a panel on the left. To make the attributes understandable by the user, the

system also shows some example values. First, Michael drags & drops the latitude

and longitude SongKick attributes into the related fields in the map UI template

(Figure 4.1, circle #2). Then he chooses a table UI template with three items in

column (Figure 4.1, circle #3) for visualizing, when required, some additional de-

tails about a musical event. He selects and drops the desired attributes in the fields

of the table template (highlighted in yellow in Figure 4.1, circle #2).

After performing the mapping phase, Michael saves the mashup. Figure 4.2

reports an example of the created mashup, which is immediately executed in the

Web browser. By typing “Vasco Rossi” in the search box, the forthcoming events

of this singer are visualized as pins on the map.

1

1

2

2

3

3

 The EFESTO Platform

66

Figure 4.2: SongKick data source visualized as a map and joined with Google Images to

show city pictures related to each SongKick event

Michael can also integrate data coming from different services through un-

ion and join operations (also called merge in other mashup tools [24]) that he vis-

ually expresses through drag&drop actions operated on the running mashup. For

example, to enrich the dataset of events retrieved by SongKick, Michael integrates

SongKick with Last.fm, thus exploiting the union operation. In particular, he acts

directly on the SongKick UI component previously created by clicking on the

gearwheel icon in the toolbar (pointed by the circle #1 in Figure 4.2) and choosing

the “Add results from new source” menu item. A wizard procedure now guides

Michael in choosing a new service and in performing a new mapping between the

Last.fm attributes and the UI template already used when SongKick was created.

The newly created dataset is shown in the same fashion as reported in Figure 4.2

but now, when queried with an artist name, the widget visualizes results gathered

both from the SongKick and Last.fm services.

Another data integration operation available in EFESTO is the join of differ-

ent datasets. For example, since SongKick does not provide images of the location

where concerts are held, Michael joins the SongKick city attribute with Google

Images; the city name now becomes the keyword for extracting from Google Im-

ages a sequence of related pictures. To perform this operation, Michael clicks on

the component gearwheel icon and choses the “Extend results with details” menu

item. A new wizard procedure guides him while choosing the service attribute to

be extended (City in this example), the new data source (Google Images) and how

to visualize the Google Images results. From now on, as shown in the right-hand

1

1

 The EFESTO Platform

67

side of Figure 4.2, when clicking on the city name in the map info window, anoth-

er pop-up visualizes the Google Images pictures related to the selected city.

Another operation available in EFESTO is the change of visualization for a

given UI component. Michael, in fact, during the interaction with SongKick, de-

cides to switch from the map UI template to the list UI template (see the result in

Figure 4.3, circle #1). To perform this action, he clicks on the gearwheel icon in

the SongKick toolbar and choses the Change visualization menu item. A visual

procedure allows Michael to choose a UI template (a list in this case), and

drag&drop the SongKick attributes onto the UI template, as already performed

during the SongKick creation.

Figure 4.3: Use of some tools available in EFESTO to manipulate SongKick data

Until now, Michael has aggregated and composed information according to

a paradigm that is similar for some aspects to the ones provided by other mashup

platforms [34]. Our field studies (see Section 4.6), however, revealed that

mashups generally lack data manipulation functions that can be instead useful to

support common tasks [5, 9] and can empower the users to play a more active role

than just consuming the finally visualized information. EFESTO was thus extend-

ed with a set of tools that, by exploiting functions local to the platform or exposed

by remote APIs, provide the possibility to “act” on the extracted contents, for ex-

ample to collect&save favorites, to compare items, to plot data items on a map, to

inspect full content details, or to arrange items in a mind map to highlight rela-

tionships [12]. Coming back to our scenario, as shown in Figure 4.3, Michael adds

some tools into his workspace, each of them devoted to a particular task. For ex-

ample, each time Michael drags a SongKick event into the Map tool (Figure 4.3,

circle #3), this item is automatically ‘translated’ as pin on the map. Another ex-

1

1

2

2

3

3

 The EFESTO Platform

68

ample is the Comparing tool (Figure 4.3, circle #2) that assists the user in compar-

ing items retrieved by one or more services (SongKick events in Figure 4.3). In

general, item transitions across different tools determine different organizations

and visualizations of data and progressively enable different functions (see Sec-

tion 3.4).

4.5 EFESTO architecture

Figure 4.4 illustrates the overall organization of EFESTO. The platform supports

the composition of heterogeneous components (data, UI and logic components) by

means of an orchestration logic that enables extracting and integrating data and

operations provided by different data components, mainly to create the so-called

UI components. A UI synchronization logic also allows one to synchronize at the

presentation layer the behavior of different UI components. This synchronization

is based on an event-driven paradigm that couples events generated by source

components to operation enacted in target components. The platform thus gener-

ates hybrid mashups that integrate data and orchestrate functions, and provides

structured and coordinated visualizations of the integrated data set and functions.

EFESTO is strongly characterized by its interaction layer and, in particular,

by its visual language that allows the users to create “live” mashups without writ-

ing a line of code. The adoption of a visual notation and the liveness of the

mashups under construction demand for the definition of an execution logic that is

distributed between the platform front-end and back-end and is in charge of inter-

preting the user composition actions and putting them in action immediately.

Another relevant feature is the capability of generating models (Workspace

Descriptors and UI Component Descriptors), in a model-driven engineering

(MDE) fashion. Models, expressed according to a Domain-Specific Language [9,

24], specify the user composition choices and drive the instantiation of the

mashup running code. The MDE paradigm thus enables the deployment of a same

mashup on multiple devices, as native execution engines can interpret the same

generated models on different target devices. In order to support this execution

paradigm, service descriptors are also needed to provide an adequate abstraction

layer for invoking and querying services. The rest of this section will illustrate the

mechanisms through which different modules, distributed along different layers,

interoperate to give life to the EFESTO composition and execution paradigm.

 The EFESTO Platform

69

Figure 4.4: The EFESTO Three-layers architecture

4.5.1 Interaction Layer

In EFESTO, the Interaction Layer provides a kind of key metaphor determining

the mashup logic and the overall system behaviour. Operations for mashup com-

position are indeed expressed by the users through direct manipulation actions on

UI elements in charge of rendering data. According to a “programming-by exam-

ple” paradigm, user actions operated on sample data items extracted from data

sources are interpreted as models of queries to be executed on entire data sets and

of the orchestration logic to be applied on the involved services. For instance, us-

ers connect some UI elements that display items retrieved from two different data

sources to express a data flow for merging the two sources; or they move into an

existing UI component some data attributes taken from a different service to de-

 The EFESTO Platform

70

fine a union with this service. In other words, while acting directly on sample data

objects, users program service composition to obtain new data sets, functions and

visualizations.

This paradigm that, as demonstrated in some user studies [10, 65], is an es-

sential prerequisite to foster EUD of mashups, is made possible by some front-end

modules. As represented in Figure 4.4, the Interaction Layer consists of a Web

application that represents a view on the model governing the logic for mashup

composition and execution. A Web mashup in EFESTO is a set of UI compo-

nents, each one providing a view on one or more data sources. The construction of

such data views and their visualizations are managed by the UI Component Man-

ager, a front-end module that instantiates each UI component based on the data

sets built by the mashup engine. The logic of the UI Component Manager is de-

termined by UI Templates. UI Templates are cornerstone elements in EFESTO,

both for the way the users perceive the mechanisms for building UI components,

and for the data integration logic behind the construction of the components data

sets. Indeed, on the one hand, UI Templates provide the users with a schematic

representation of how data extracted from services will be organized (i.e., aggre-

gated and visualized) within each single UI component [9, 24]. On the other hand,

at the Logic Layer UI templates then provide data integration schemas, as they

determine how the mashup engine has to query the involved data sources and in-

tegrate the resulting data. Indeed, by associating selected service attributes to UI

template elements, the composer defines a projection of the only attributes of in-

terest. In addition, if the attributes associated to a single UI template element are

selected from multiple services, then the structure of the UI template determines a

global integration schema mapping the attributes of single services into an inte-

grated data set. These actions captured at the interaction level are then translated

into the specification, within a UI component descriptor, of service queries and

data fusion procedures used by the mashup engine to build the integrated data sets

[24].

As represented in Figure 4.4, each UI component displays a set of UI items,

i.e., data elements rendered according to the layout provided by the UI template.

UI items are the atomic elements composition actions can be applied to. Starting

from a UI item, the users can expand the mashup data set by defining data integra-

tion operations (union and join) with data sets of additional services. The selection

of a UI item can provide an entry point for the exploration in the LOD. The user

can also achieve coordinated visualizations of the UI Components by synchroniz-

ing the event of selecting a UI item in a component with the activation of opera-

 The EFESTO Platform

71

tions that can change the status of other components (e.g., to achieve a different

data set filtering or a new visualization).

Given a UI component, transitions among different UI templates are possi-

ble to achieve different data organizations (e.g., from a table highlighting detailed

properties of each single data instance to a mind map highlighting the relationship

among different instances) and visualizations (e.g., from a list of addresses to a

map based representation of the same data). Transitions, however, imply the need

of modelling the structure of the data items originally extracted from data sources,

to be able to trace and identify the transformations needed when moving the items

across different visualizations. For this reason, each service, when registered, is

associated with a set of possible service visualizations, i.e., the specification of UI

templates families (i.e., lists, maps, charts, graphs) that can be properly used to

render the service data. The mapping between the service data attributes and spe-

cific UI items in charge of attributes rendering is also defined.

The live programming paradigm, which allows the users to see immediately

the effect of their actions on the mashup under construction, is achieved by means

of Event Listeners that are able to catch the events generated by the user actions

(e.g., the drag of a service attribute to a field of a UI template) and send them to

an Event Manager. This module of the Mashup Engine, located in the Logic Lay-

er, is in charge of translating events into the proper invocation of services whose

effect is the refresh of the status of the mashup and of its UI components, depend-

ing on the captured events.

4.5.2 Logic Layer

The Logic Layer provides modules and mechanisms that translate the user com-

position actions operated at the Interaction Layer into the mashup executing logic.

In this Section, different modules are described supposing that they are deployed

separately from the Interaction Layer modules, i.e., on a back-end server. Howev-

er, the Logic Layer can be distributed between the client and the server or, at the

other extreme, located only at the client-side if the execution context requires a

single-user, lightweight deployment. Server-side execution offers the advantage of

managing a long lasting instantiation logic with the additional possibility of sup-

porting multi-user mashups, collaborative composition paradigms, and the distrib-

uted execution of interactive workspaces.

 The EFESTO Platform

72

The Mashup Engine

The Mashup Engine is invoked by the UI Component Manager each time an

event, requiring the retrieval of new data or the invocation of service operations,

is generated at the interaction layer. For instance, when the user specifies a search

key to filter a component data set, the typed key and the component identifier are

passed to the Mashup Engine. The Mashup Engine retrieves from a dedicated re-

pository the XML-based UI Component Descriptor, and inspects it to identify all

the services used in the mashup. Figure 4.5 illustrates an example of UI compo-

nent descriptor where SongKick is joined with YouTube. Based on this specifica-

tion, the Mashup Engine retrieves from the Service Descriptor repository all the

XML descriptors associated with the services involved in the mashup (SongKick

and YouTube in Figure 4.5). Each service descriptor is sent to the Source Dis-

patcher that, depending on the specified service type, invokes specific adapters to

retrieve the data. In fact, our platform can manage different types of data sources,

like RESTful and SOAP services, databases, files (e.g., csv, excel) and Linked

Open Data. If a new type of data source needs to be registered in the platform, a

new adapter has to be developed. Depending on the nature of the data source, the

Source Dispatcher instantiates an adapter available in the Source Manager pack-

age that implements the logic for querying the specific type of data source. More-

over, if a data source demands for an authentication, the Authentication Manager

provides for different classes implementing different types of authentication, like

OAUTH 2.0, OpenID and Custom Authentications.

Figure 4.5: XML UI Component descriptor: the SongKick service is joined with YouTube

through the Artist attribute

 The EFESTO Platform

73

After querying each service as modelled in the UI Component Descriptor,

the Result Builder creates the final data set, codified in JSON, and sends it back to

the UI component manager. Figure 4.6 represents an example of JSON array pro-

duced by querying the mashup shown in Figure 4.5. Finally, the UI Component

Manager builds the UI view to render the JSON data according to the layout of

the component UI template.

The Event Manager

Another important module in the Logic Layer is the Event Manger. It is in charge

of translating any composition action into proper descriptors, and to enact imme-

diately service invocations to achieve the corresponding behaviour in the mashup

under construction. When the users operate on a mashup the visual actions are

caught by the Event Listener at the Interaction Layer and sent to the Event Man-

ger. For example, at the beginning of our reference scenario, Michael creates the

SongKick UI component by means of a wizard procedure that guides him to

choose the data source (SongKick) and the UI template (Map), and to associate

through drag&drop actions the SongKick attributes to the UI template fields.

When Michael saves the SongKick mashup, two descriptors are created. The first

one is similar to the one reported in Figure 4.5 (except for the <joins> tag that

does not have any children when SongKick is created). When users expand the

data source by joining and unifying it with other sources, the <joins> and <un-

ions> tags are enriched with specific children.

Figure 4.6: JSON array produced by the Mashup Engine invoked on the UI Component de-

scriptor shown in Figure 4.5 with the “U2” query

 The EFESTO Platform

74

The second XML file then defines the mapping between the data attributes

included in the mashup (as described in the first descriptor) and the chosen UI

template (whose structure is in turn described in an XML file stored in the Service

Visualizations repository).

The Annotation Engine and the Polymorphic Data Source

During our field studies, we noticed that very often, during the process of explor-

ing information, end users were forced to leave the platform to perform their tasks

through traditional search engines. To overcome this limitation and better satisfy

the end users’ information needs, a new polymorphic data source built upon the

LOD cloud, and in particular exploiting the DBpedia knowledge base has been in-

troduced.

In order to create the polymorphic data source, a mapping step is required

between all the data sources registered in the platform and the DBpedia ontology

classes. The main goal of this mapping is to annotate the attributes of each service

by using a DBpedia class that is semantically similar to the attribute. In fact, each

time the EFESTO administrator registers a new service through the administration

panel, the Service Registration Manager (a module of the Web front-end) asks the

administrator to type some example queries (at most a dozen) to automatically an-

notate the service attributes. The service descriptor, together with the provided ex-

ample queries, is sent to the Annotation Engine that automatically generates the

service attribute annotations [35], which are then stored in the Semantic Annota-

tion repository. Further details about this data source, and in particular about mo-

tivation and algorithm, are described in Chapter 5. In this section, only the inte-

gration of this data source in EFESTO architecture is described.

Now let us come back to the Michael scenario and suppose that he wants to

join the SongKick Artist attribute with DBpedia. After he decides to use DBpedia

as extension data source, the Event Manager triggers the retrieval, by the source

manager, of the XML file with the annotations associated with SongKick. The

class used to annotate the artist attribute (MusicalArtist class) is then extracted

from the DBpedia ontology. Afterwards, the wizard procedure shows to Michael

all the MusicalArtist properties as attributes that he can choose to build the joined

data source (see the highlighted box in Figure 4.7). After the drag&drop of a sub-

set of properties into the UI template fields, Michael saves SongKick. Now on, the

event of clicking on a specific artist name in the SongKick results triggers in

EFESTO the retrieval of a specific instance of the DBpedia knowledge base and

its visualization in the chosen UI template, according to the mapping previously

 The EFESTO Platform

75

performed by the user. To better understand what happens behind the scene when

an artist is clicked, let us suppose that Michael clicks on the U2 label. First of all,

the Mashup Engine, and in particular the Linked Open Data module, queries

DBpedia with a SPARQL query like:

PREFIX dbpedia: <http://dbpedia.org/resource/>

select ?p ?o

where {dbpedia:U2 ?p ?o}

The query result is a DBpedia instance characterized by a set of properties,

some of which have to be mapped in the chosen UI template (e.g., genre, starting

year of activity, and artist photo). Sometimes, it could happen that the retrieved

instance does not have a value for a specific property; in this case, this value is

skipped in the UI template. Furthermore, when the Mashup Engine queries DBpe-

dia, it could happen that different instances are associated with the same label. For

example, if the previous query includes the Ligabue search key instead of U2, five

instances are retrieved: Antonio Ligabue, an Italian painter; Giancarlo Ligabue, an

Italian palaeontologist; Ilva Ligabue, an Italian operatic soprano; Ligabue, a TV

drama; Luciano Ligabue, the Italian singer (our target). To identify the right in-

stance (Luciano Ligabue), the system checks which one is a sub-class of the class

used to annotate the artist attribute, namely MusicalArtist in the Michael’s scenar-

io. This example highlights the dual role of service attribute annotations, which

are used i) during the mapping phase, to show the DBpedia class properties that

the users can move into the UI Template fields (Figure 4.7) and ii) during the exe-

cution of a SPARQL query, to disambiguate multiple retrieved instances.

4.5.3 Service&Data Layer

Through the Service&Data layer, the EFESTO Web server exposes repositories of

XML-based descriptors that enable the invocation of services to extract data.

The Service Descriptors provide abstract specifications on how to query

each data source registered in the platform and how to read its results. The Work-

space Descriptors then contain representations of the workspaces created by each

user. For each workspace, a descriptor specifies the included UI components and

possible UI synchronizations defined among them. The UI Component De-

scriptors then specify the services included into the components, the user-defined

 The EFESTO Platform

76

queries to integrate the services data sets (see Figure 4.5), and the specification of

the component UI template.

Figure 4.7: Mapping step between the DBpedia-based polymorphic data source properties

and the list UI template

The Workspace and UI Component descriptors are associated to the user

who creates them, and thus can be accessed depending on the users’ access rights.

Some “default” workspace descriptors are also available to any user; they provide

the specification for pre-packaged workspaces related to specific topics or do-

mains. In fact, users can compose their mashups starting from an empty work-

space (like in Michael scenario) or choosing a thematic template filled with some

ready-to-use UI Components that are relevant for particular domains/topics.

The Semantic Annotations repository stores the files used to describe the

DBpedia classes associated to each service attribute. Finally, the Service Visuali-

zations descriptors provide the abstract representations (in terms of offered UI el-

ements) of the available UI templates.

The definition of the service descriptors and semantic annotation is a tech-

nical task that could be out of reach for non-programmers and, as such, could limit

the introduction of new services within the platform by end users. To alleviate this

problem, the definition of descriptors and annotations is facilitated by visual

forms that only require inserting some values; then the XML specification is au-

tomatically generated by the system. Also, we envisage the adoption of our plat-

form in meta-design scenarios, where other stakeholders (i.e., expert programmers

 The EFESTO Platform

77

and domain experts) are supposed to configure the platform for its initial use by

the end users.

In general, despite the difficulties that end users might encounter, the adop-

tion of service descriptors and adapters enables a decoupling between the Mashup

Engine and the external resources so that adding a new data source only requires

defining a new descriptor; an adapter is also needed but only if the Source Man-

ager does not already include one able to manage that type of data source.

A further aspect to be noted is that, although the service and mashup de-

scriptors are codified using a custom XML grammar, the Mashup Engine is de-

signed to work even with different grammars designed for service and mashup de-

scriptions, like for example EMML (Enterprise Mashup Markup Language)9 for

which an open community already provided a large amount of descriptors. Any

other service ecosystem, where services are homogeneously described, would

work as well. However, to speed up the platform development and validation a

custom XML grammar inspired to EMML has been proposed.

4.6 EFESTO Evaluation

In the next three subsections, three user studies performed to validate the pro-

posed models, architecture and composition paradigm are reported. These studies,

as well as other phases of this research, are the result of a collaboration with pro-

fessors and researchers affiliated to other universities (Politecnico di Milano, La

Sapienza University of Rome, University of Trento) [5, 9] and to SAP company

[11]. For this reason, in the following, we will refer to the involvement of more

than one researcher during the user studies.

4.6.1 Field study in the Cultural Heritage domain

A first field study was conducted in November 2012 at the archeological park of

Egnathia to assess the use of EFESTO in a real setting. The study was intended as

a formative evaluation to acquire insights from the use of the first version

EFESTO in the field, highlighting the pros and cons and obtaining insights on the

overall approach and on how to improve and extend the platform. The prototypes

9 http://mdc.jackbe.com/prestodocs/v3.8/index.html

 The EFESTO Platform

78

used in the study were implemented on desktop PCs, tablets and large interactive

displays [6].

At that time, EFESTO only allowed to aggregate different UI components in

a personal workspace, to bookmark content retrieved by different components and

to show bookmarks on a visualization component like Google Maps. No join and

union operations could be performed by end-users since these operations, at that

time, were performed by developers and domain experts (park guides) during the

customization of EFESTO to a specific domain (middle layer of our meta-design

model see Section 3.2). After this field study, we decided to introduce in EFESTO

more complex mashup operations (e.g., join and union) for non-programmers, to

satisfy the emerging requirements.

Participants and design

The study involved two professional guides, named Achille (male) and Conny

(female), and 28 visitors. Both guides formally agreed to participate in the study

by signing an explicit consensus. Each guide accompanied a group of 14 visitors

in the visit of the Egnathia park. The visitors were people who had booked a visit

to the park. They were heterogeneous as regards age (from 21 to 50 years old,

plus an 8-year old child), gender and cultural background. They were all Italian

but one, a lady from Portugal who currently lives in a nearby city and speaks Ital-

ian very well. These visitors were randomly divided into two groups.

Procedure

The study took place on two days and consisted of two main sessions: (1) work-

space composition (customization) and (2) park visit. The workspace composi-

tion session occurred on November 7th, 2012 in the guides’ office. The two

guides were given a 1-h demonstration of a desktop application, accessible

through a PC, to be used to customize and compose the workspace (e.g., to regis-

ter services, filter service attributes, chose visual templates to visualize service re-

sults, mashup services with join and union operations). After this, according to the

co-discovery exploration technique [53], the two guides were invited to create to-

gether a workspace for visiting the archeological park of Monte Sannace, in the

Apulia region. In this way, the guides had the possibility to become familiar with

the application and, overall, to customize the platform to their domain, as required

by our meta-design model (see Section 3.2). Then, they were asked to create their

workspace to be used for the visit of the Egnathia archeological park. The guides

individually created their workspace by positioning on an interactive map of the

 The EFESTO Platform

79

park all the multimedia contents they would like to show to visitors. Moreover,

during this phase, guides asked for non-available data sources that were registered

in EFESTO by HCI experts. For example, they asked for data source to retrieve

images that was created by a developer as union of Google Images and FlickR and

then it was made available to the guides. At the end of the workspace creation ses-

sion, the guides participated in a design workshop together with a platform de-

signer and two HCI researchers, in order to discuss impressions, problems and

possible modifications of the composition mechanisms and the overall system.

On November 17th, the park visit session was performed at the archeologi-

cal park of Egnathia. This session consisted of two different phases: (1) the brief-

ing phase at the beginning of the visit, in which the guide accessed his/ her work-

space through a large multi-touch display (46-in.) placed at the entrance of the in-

door park museum (Figure 4.8a) and (2) the tour phase, in which the guide ac-

cessed his/her workspace on a tablet (7-in.) during the tour through the remains in

the park (Figure 4.8b).

Figure 4.8: The guides interacting with their workspace: (a) during the briefing phase using

the multi-touch display and (b) during the tour using the tablet.

First of all, the visitors were informed that they were participating in a

slightly different visit with respect to the traditional one, since multimedia materi-

als available on different technological devices were going to be tested. Thus,

some pictures would be taken but none would be published in which people’s fac-

es could be recognized. They all agreed to participate in the visit.

In the briefing phase, the guide interacted with his/her workspace on the

multi-touch display to introduce visitors to the history of Egnathia and to what

they were going to see in the park. After this, the tour phase began. During the

tour, guides could use their workspace on the tablet to satisfy situational needs,

e.g., to show visitors more details about the remains and to answer visitors’ ques-

 The EFESTO Platform

80

tions better by showing specific multimedia contents. In both phases, guides could

search for new contents from services and, possibly, update their workspace by

retrieving and bookmarking new content. The visit session lasted approximately

one hour and half.

The two visits occurred in the morning. In the afternoon, another design

workshop was carried out involving the same participants as the first one, focus-

ing on the pros and cons of workspace use. Each group of visitors participated in a

focus group at the end of the visit, where their impressions on the overall visit ex-

perience were discussed.

Data collection

In order to analyze the guides’ experience in composing their workspace and us-

ing it, data were gathered through naturalistic observation of the guides during:

(1) the workspace composition on the desktop PC, (2) the interaction with the cre-

ated workspace running on the multi-touch display during the briefing phase, and

(3) the interaction with the tablet during the tour phase. These data were comple-

mented by the guides’ comments gathered during the design workshops after the

workspace composition and at the end of the Egnathia park visit.

In the workspace composition session, two HCI experts observed the two

guides creating the workspace together: one took notes on paper and the other

videotaped all interactions. At the end of the session, they participated in the de-

sign workshops together with the guides and the platform designer. The workshop

was audio-taped.

Six HCI experts (three experts for each group) followed the park visit ses-

sion, videotaping and taking notes of the main events. At the end of the visit, the

three experts moderated the focus group with the visitors’ group they had ob-

served. The focus groups were audio-taped. Moreover, the two guides participat-

ed in a design workshop, with the same modality and participants of the previous

workshop.

The set of notes collected by the experts in the two sessions was substantial-

ly extended by video- and audio analysis. Two researchers transcribed the videos

and the audios and independently double-checked 65% of the material. If the in-

ter-rater agreement was less than 70%, the researchers discussed the differences

and reached an agreement. Final reliability was high (agreement over 90%).

 The EFESTO Platform

81

Results of composit ion phase

In this phase, the guides were observed while composing their workspace for vis-

iting the archeological park of Egnathia, using the desktop application. In general,

the usability problems they experienced were not so serious to get them stuck;

they were in fact able to continue the workspace composition and use without the

help of the HCI experts. Both guides appeared disoriented by the few contents re-

turned by some of the searches they had performed; they tried to refine the search

by typing different keywords and, finally, added the most appropriate multimedia

materials they retrieved.

At the end of this phase, the two guides participated in the design workshop.

As an overall impression, they said they appreciated the ease of use of the applica-

tion, in particular the possibility to quickly put the retrieved content on the park

map. They were rather satisfied by the workspace they had created and they were

confident that it would be a valuable support during the visit. Achille jokingly said

to Conny: When this system will be released, I’ll call you the day before a visit to

ask for suggestions about what to include in my application.

Results of briefing phase

The briefing aimed at both introducing visitors to the history of Egnathia and

providing some preliminary information about the park. The briefing time, during

which the guides used the multi-touch display, lasted much longer than in tradi-

tional visits, where the briefing to introduce visitors to the archeological park is

about 5 min at most. Conny used the multi-touch display for about one third of

Achille’s time (see Table 4.1). During his interaction with the multi-touch display,

Achille experienced three interaction difficulties due to some technological limita-

tions (Table 4.1): 1) a temporary loss of Internet connection; 2) he was not able to

close the pop-up window by touching the “X” icon, which was located near the

display border (our multi- touch device is not very sensitive along its borders)

and; 3) in the few situations he had to use the virtual keyboard displayed on the

screen, due to low precision of the device in correctly detecting the pressed key.

Conny had only one problem during her interaction with the display related to the

use of the virtual keyboard. However, both guides were able to autonomously

manage such difficulties.

 The EFESTO Platform

82

Table 4.1: Use time and interaction difficulties with the multi-touch display

Variable Achille Conny

Use time 28m 35s 11m 45s

Interaction difficulties 3 1

Both guides appeared quite relaxed in using the multi-touch display. They il-

lustrated the multimedia contents they had previously inserted in their workspac-

es. They were able to search new content without difficulties related to the search

functionality. Specifically, Table 4.2 shows the number of searches and work-

space modifications Achille and Conny performed. Achille carried out 4 searches,

and only 1 out of 4 was not successful because the retrieved contents did not satis-

fy his needs. In three cases, Achille believed the retrieved content should have

been inserted in his workspace and thus he modified it. Conny performed only 1

search and she did not update her workspace.

Table 4.2: Number of performed searches and modifications of the workspace with the

multi-touch display

 Achille Conny

Searching new content 4 1

Modifying the workspace 3 0

It is worth noticing that, when the search for new content required more than

2 min, visitors appeared to be distracted and started chatting among themselves

and looking around. Also, in the focus group, some visitors remarked that the po-

sition of the multi-touch display generated some problems since, when the guide

was interacting with the display, he partially covered it and visitors had to move

their heads or their bodies, since they were curious to see all the steps of the inter-

action.

During the briefing phase, all visitors appeared very interested in the con-

tents illustrated by the guides on the multi-touch display: they asked their guide

questions, commented on images among themselves and in general appeared en-

gaged and stimulated by the material shown. This was confirmed in the focus

group, in which visitors explicitly expressed their positive opinion about the brief-

ing phase. Nobody complained about this longer phase; on the contrary, they all

said: It's worth it!. They also said that they would have liked a debriefing phase at

the end of the visit, i.e., a phase in which to deepen some topics and possibly look

again at the multimedia resources on the multi-touch display, in order to comment

with the guide those aspects that had captured their attention during the visit.

 The EFESTO Platform

83

Results of tour phase

In the tour phase, the two guides accompanied the visitor group through the re-

mains in the outdoor park. The guides were free to use their tablet as well as the

panels located in the park to present the park remains better. Achille and Conny

used tablet and panels in different ways (see Table 4.3). Conny was more prone to

the use of such tools; in fact, she used the tablet nine times and the panels nine

times. In total, she spent 7 min and 53 s commenting the contents available on the

tablet, and 3 min and 58 s commenting images on the panels. Achille used such

tools very little: he used the tablet once for 1 min and a panel once for 10 s. It is

evident that both guides were stimulated to talk more about the contents on the

tablet than those on the panels.

Table 4.3: Frequency and use time of tools

Tools Variable Achille Conny

Tablet Frequency 1 9

Time 1m 7m 53s

Panels Frequency 1 9

Time 10s 3m 58s

Both guides performed searches through the workspace on the tablet. In 3

out of the 9 times in which Conny interacted with the tablet, she performed a

search. Only one search did not provide results of her interest. The only time

Achille used the tablet was to perform a search. Specifically, the Portuguese visi-

tor said that she loved history and she had visited some Roman archeological

parks in Portugal. Achille was very intrigued and started to make searches to un-

derstand similarities and differences between the Portuguese sites and Egnathia.

From the retrieved images, similarities between the two archeological sites were

evident.

During the tour phase, both Achille and Conny did not want to modify the

workspace (see Table 4.4) since they thought that this would require time and,

consequently, distract the visitors.

Table 4.4: Number of performed searches and modifications of the workspace with the tablet

 Achille Conny

Searching new content 1 3

Modifying the workspace 0 0

In the design workshop after the park visit, the guides reported that, during

the many visits they have performed in their career, very often visitors interrupt

 The EFESTO Platform

84

them to integrate the guide’s presentation with their own knowledge, e.g., history

teachers report something they studied, archeologists mention something about a

recent discovery in another site, etc. They said that, after the visit, they like to

study and analyze more in depth the information given by such visitors, and there-

fore generally search on the Web, or request material from their colleagues by e-

mail or by phone. This modus operandi allows them to enrich their knowledge in

preparation for successive visits. The guides clearly remarked that the workspace

would improve greatly the acquisition and storage of new knowledge.

Both guides also mentioned that, during the tour, searches requiring more

than 2 min interrupted the narrative and distracted visitors. Even though they did

not feel uncomfortable during this waiting time, they would have preferred to col-

lect more material without the delay due to the Internet connection, i.e., from local

repositories. Achille and Conny said that they would have liked to use the tablet

more, since they appreciated its support in making useful material available. Con-

ny explained that she had used her workspace so little during the tour because she

had inserted in it many images that were available on the panels in the park. Thus,

she had preferred to show such images on the panels since the tablet was too small

for a group of 14 people.

The tablet size emerged as an issue also in the focus groups with visitors,

who said that they preferred to look at images on the panels rather than flocking

together around the guide to see them on the tablet. They also complained about

the brightness of the tablet screen, compromised by external factors, such as sun-

light.

Discussion

The objective of this study was to assess the value of the workspace, accessible

from different devices, in enhancing visits to archeological parks. To this aim, we

analyzed the experience of the two categories of actors involved in the visit: the

guide and the visitors. The guide had a double role: (1) designer, i.e., s/he created

her/his workspace and (2) end user, i.e., s/he used the workspace during the visit

to illustrate the park remains better to visitors. The visitors participated in a visit

which was enhanced by the availability of different types of multimedia materials

and, thanks to the possibility given by the workspace to search new content, their

curiosity might be better satisfied than in a traditional visit.

Composing the workspace with a desktop application did not create particu-

lar problems for the guides. They appreciated the support of the composition plat-

 The EFESTO Platform

85

form in organizing the material for the visit. However, the guides complained

about the scarce material they were able to find when searching the services avail-

able in the platform. This is a problem common to all service-based applications,

which have to rely either on content made available by a third-party or on user-

generated content. To limit this problem, more sensible services should be added

to the platform; they can be further third-party services, if any responding to the

user needs exist, but they can also be local and ad hoc created collections of con-

tents, maintained by domain experts. Also, given that the services used for the

study in the Egnathia park are Web 2.0 resources, the guides could publish online

their own material (e.g., videos, pictures, Wikipedia pages) that can be easily ac-

cessed through the composition environment. This of course requires a more in-

tensive use of the system by the guides, since they have to realize which material

is missing and consequently enrich their public online collections.

Both guides and visitors appreciated very much the briefing phase with the

support of the multi-touch display, which appeared to be very valuable in that

phase of the visit. The display allows the guides to present much more multimedia

materials related to park elements, which enrich their spoken presentation greatly.

The visitors’ satisfaction is confirmed by their request for a debriefing phase at

the end of the visit. As pointed out in several studies, e.g., [8, 13], a debriefing

phase would be very useful, since it provides the opportunity to deepen and elabo-

rate the information received during the visit, in order to consolidate the acquired

knowledge. During the debriefing phase, points of interest that, due to time con-

straints, were not possible to visit could be quickly illustrated. For example, in the

specific case of Egnathia, the necropolis is far from the main city and often it is

not visited. In a debriefing phase, the guide could present it by showing pictures

or videos; later, people could visit it by themselves if they want to.

The study results showed a general appreciation of use of the multi-touch

display in the context of the visit. However, a difficulty was generated by the po-

sition of the multi-touch display. It was positioned on a support 110 cm high. For

this reason, some visitors could not see the whole display. In future installations, it

would be better to use a higher support (at least 150 cm), placing it on a platform

at least 50 cm high, which the guide will get on. In this way, the display would be

more easily visible to all visitors. However, the fact that the visitors moved to see

the display is a symptom of their interest in looking at the material showed by the

guide’s workspace.

A negative aspect of the use of the workspace on the multi-touch display

was the waiting time during a search for new content. This was in part due to the

 The EFESTO Platform

86

time for typing the search keywords and in part to the low connection speed.

However, the search through the workspace design environment is limited to the

services registered in the platform (i.e., Flickr, YouTube and Wikipedia). Thus,

the search for very specific material can often be unsuccessful, and this might eas-

ily bother guides and visitors. As already mentioned, the problem can be reduced

by allowing end users to add further data sources to the workspace during its use

and not only during the customization phase.

Before the study, we expected a larger use of the workspace on the tablet

during the tour phase, since it could show images of monuments and other ele-

ments of interest, helping visitors to reconstruct the original appearance of such

elements and figure out how life used to be in ancient times. Actually, Achille did

not show any multimedia content and used the tablet only for one search of a new

content. The video analysis revealed that, in a specific situation, Achille ex-

claimed: It is a pity that I do not have a picture to show you! However, he did not

consider the possibility of using the tablet to search for the picture. Since in the

design workshops he was clearly enthusiastic about the technological tools used, it

seems that he would need more time to appropriate these tools. This also holds for

Conny. She used the tablet more times but she inserted in her workspace primarily

pictures that were also reproduced on the panels in the park rather than additional

material that could complement what is already available. It was evident that visi-

tors preferred to look at the images on the panels rather than on the small screen

of the tablet, whose visibility is compromised by the sunlight. To overcome this

problem, we implemented the possibility to visualize some contents of the guide’s

workspace on the visitors’ smart phones.

Moreover, we also developed new solutions to allow the users to share the

workspace and allow others to reuse it. We were in particular interested in inves-

tigating to what extent a collaboration paradigm would improve the usefulness of

workspaces for supporting the cooperation among different stakeholders. The

need for collaboration to co-create and share workspace s has emerged as a desir-

able feature in all the user-based evaluation sessions we have performed so far.

Based on these new requirements, we defined some extensions of our composition

platform to enable workspace annotation and workspace co-creation [4] and as-

sessed them during a new field study described in the following sub-section.

 The EFESTO Platform

87

4.6.2 Field study in the Technology-Enhanced Learning

domain

Starting from the requirements emerged during the field study performed in Cul-

tural Heritage domain and described in previous sub-section, a second field study

was performed in the context of Technology-Enhanced Learning (TEL). Follow-

ing some of the emerged requirements, we improved EFESTO with i) more ex-

pressive and powerful mashup mechanisms elicited during a user study (see Sec-

tion 4.3), namely join and union operations, and ii) mechanisms to allow group of

users to compose and use the same workspace synchronously and asynchronously.

This study allowed us to analyze the use of the platform in a situation in

which students learn about a topic presented in class by their teacher, comple-

menting the teacher's class by searching information on the Web. The retrieved

information can also be communicated and shared with the teacher and the other

students using interactive whiteboards, desktop PCs and personal devices (e.g.,

laptop, tablet and smartphone).

Participants and design

The study was carried out at the technical high school “Antonietta Cezzi De Cas-

tro” in Maglie, a city in Southern Italy. It was organized over 3 days, involving a

class of 16 students (9 females, 19 year-old on average) and a teacher. All partici-

pant, teacher and students agreed to participate in the study by signing an explicit

consensus.

Procedure

During the first day, the teacher composed his workspace relative to “Communi-

cation Networks”. Two days later, the teacher gave a lesson supported by the

workspace visualized on an interactive whiteboard. At the end of the lesson, he

divided the students into groups of 2–3; each group was assigned the task of creat-

ing an workspace about a specific Communication Networks sub-topic, e.g., pro-

tocols, packet switching, and latency period. After a brief individual training ses-

sion, all the groups accessed the laboratory to carry out their assignments. Figure

4.11 shows a couple of students working with their workspace, to which they are

adding widgets visualized through a list-based visual template, to retrieve and in-

tegrate contents from Google, Slideshare and YouTube. At the end of this session,

we simulated the sharing of their workspace with the teacher by manually inte-

grating their components into a unique workspace accessible by the teacher.

 The EFESTO Platform

88

After 2 days, teacher and students met again for a class on Communication

Networks; this time the class was supported by the integrated workspace running

on the interactive whiteboard (see Figure 4.9). The discussion on the retrieved in-

formation lasted for an hour and a half. At the end, teacher and students had 20

min to fill in a short questionnaire inquiring about platform pros and cons they

perceived.

A significant part of this field study was a design workshop that was con-

ducted at the end of the third day, in order to better understand the need for col-

laborating with other people by means of workspaces. The design workshop

aimed at engaging students and teacher in: (1) elicitation of positive and negative

aspects of the overall interaction experience with the platform; (2) active partici-

pation in the design of new solutions, primarily stressing the envisioned possibili-

ties of collaborative composition of an workspace. The latter objective was de-

rived from the results of the field study in the Cultural Heritage domain indicating

the willingness of professional guides to compose collaboratively the workspace

to be used during a visit. Four groups were formed, each involving four students,

one interaction designer, one platform developer and one HCI researcher. One

group also included the teacher. Stimulated by the researcher, participants elabo-

rated their ideas about interaction possibilities. Then, they were asked to sketch

such ideas (see Figure 4.10).

Figure 4.9: A student discussing about Communication Networks by using the integrated IW

on the interactive whiteboard.

 The EFESTO Platform

89

Figure 4.10: A group sketching interaction ideas during the design workshop.

The design workshop lasted for an hour and a half. At the end, a plenary ses-

sion of 30 min was held and the more promising ideas were illustrated and dis-

cussed. They were instrumental for the design of both functionality and visual in-

terface of the collaboration mechanisms that, as discussed in Section 3, we next

implemented in our platform.

Figure 4.11: Two students working with their IW on a desktop PC.

Data collection

In order to analyse the participant experience during the workspace composition

and use, different data have been collected. The first day, data about the teacher

interaction were gathered through audio/video recording, observation and notes.

Moreover, the teacher was asked to verbalize their thoughts and comments on his

actions according to the think-aloud protocol. Lastly, a semi-structured interview

was conducted at the end of the session.

At the second day, during the lesson, data about the teacher use of his work-

space were gathered through audio/video recording, observation and notes. After

the lesson, when the groups of students were asked to compose their workspaces

 The EFESTO Platform

90

following the teacher indications, data were gathered through audio/video record-

ing, screen-capture, observation, notes and a post-test questionnaire.

At the third day, during the lesson, data about the teacher use of his work-

space were gathered through audio/video recording, observation and notes. After

the lesson, during the design workshops, data were gathered through audio/video

recording and notes. Moreover, also the sketches created by students have been

collected.

Results and Discussion

The analysis of data collected during the three days revealed important results. In

general, it turned out that both students and teacher wish more flexibility in organ-

izing the interactive workspace, and the need emerged for visual containers in

which retrieved content can be arranged and classified according to unforeseen

needs. They stressed that the platform should be improved to support collabora-

tive activities and contributed in the design of possible features and usage scenari-

os. The teacher proposed a “peer-learning” workspace, in which both teachers and

students can share their contents, offer comments or create a discussion thread,

and express their appreciation in a Facebook or YouTube style. The students en-

visaged the possibility of a distributed collaborative creation of a workspace,

which could be asynchronous in case of a homework assignment or synchronous

if carried out in class during a lesson.

4.6.3 A utilization study to evaluate TUX principles in

EFESTO

The field studies performed during this research (Section 4.6) revealed some

weaknesses of our approaches and, in general, of mashup tools [5], related to the

manipulation of the information retrieved by the user-defined data sources. The

integration of TUX principles in mashup tools aims to overcome rigid schemas for

information provisioning and fruition, generally adopted by isolated, pre-

packaged mashup tools (Section 3.4).

As described in Section 4.4, in EFESTO the visualizations of data retrieved

from data sources are enriched by augmenting the UI templates with the notion of

TUX task containers, i.e., elements whose role is to supply task-related functions

for manipulation and transformation of task objects along user-defined task flows

[16]. In particular, after the first two field studies, we extended EFESTO with a

set of tools that, by exploiting functions local to the platform or exposed by re-

 The EFESTO Platform

91

mote APIs, provide the possibility to “act” on the extracted contents, for example

to collect&save favorites, to compare items, to plot data items on a map, to in-

spect full content details, or to arrange items in a mind map to highlight relation-

ships [12].

To assess the benefit of this integration, a utilization study inspired by [44],

i.e., a study in which participants are required to perform real tasks using the sys-

tem, has been executed. This study was performed during the interactive session

of the international symposium on End-User Development. That session was open

to both conference participants and external visitors and was widely advertised by

the conference organizers before and during the conference days. The proposed

activity allowed users to interact with a mashup tool that enables them to express

and respond to their task needs rather directly and dynamically. By observing the

end users while using this system we aimed to assess the validity of our ideas on

the integration of mashups and TUX principles, and to verify whether making

mashups actionable actually provides an added value with respect to the users’

needs and expectations. We also aimed to stimulate a “new way of thinking” to-

wards the definition of systems that really support users in shaping the software

environments they interact with, according to their situational needs.

Participants and Design

We were able to recruit a total of 7 participants (4 female), aged between 20 and

60. Single-user interactions with the platform was scheduled. To guide partici-

pants through the platform use, they were provided with a scenario in which we

reported 4 steps the users have to follow during their interactions.

The main person of the scenario was Maria, who wants to attend a musical

event with her friends. She uses the platform to search for forthcoming music

events. She also gathers information that can inform the discussion with her

friends about which event to attend. Maria logs in the Web platform that offers a

workspace where she can retrieve information through the mashup functionality

and act on the information through specific functions provided by task containers.

The platform is equipped with services providing data on music events, plus some

other services of generic utility, e.g., map services. The workspace is also

equipped with a collection of task containers. Each container is represented as a

box widget with a labelled icon that indicates its intended purpose by highlighting

a primary task function, e.g., a World globe for browsing, two side-by-side paper

sheets for comparing, a call-out for communicating. When needed, a container

 The EFESTO Platform

92

representation can be moved by Maria from this collection into the main area of

the workspace, in order to activate its full functional scope.

(Step 1): Maria selects the task container “Events” and chooses “music” as

event type. A map is displayed: every music event is represented as a pin at spe-

cific coordinates. The details of each event can be inspected through the corre-

sponding pin.

(Step 2): Maria includes the “Selecting” container where she makes a pre-

selection by dragging from the “Events” container those events she is more inter-

ested in. She further refines her selection by means of a “Comparing” container,

which offers specific features supporting the comparative inspection of items. Af-

ter this analysis, Maria chooses the three most promising events and removes the

others from the “Selecting” container.

(Step 3): Maria drags the “Housing” container in the main area of the work-

space, in particular touching the “Selecting” container. In this way, she synchro-

nizes the two containers. Three lists of hotels, one for each different event place,

are visualized. For each hotel it is displayed a thumbnail photo, name, price,

guests’ rating. Maria performs those actions usually allowed by the hotel booking

web sites, i.e., changing dates, ordering, filtering, inspecting details, visualizing

the hotels on a map. She selects a couple of hotels for each location. On the basis

of the housing information, she decides to reduce the candidate events to only two

and eliminates the third from the “Selecting” container.

(Step 4): Maria wants to send an email with a summary of the information

related to the two chosen events. Thanks to the “Communicating” container, she is

not forced to use an email client external to the work- space she is working on.

She has just to drop items from the “Selecting” to the “Communicating” contain-

er, where she selects the recipients and the communication channel, e.g. a post on

a social network, an email, etc. She decides to send an email. The email addresses

of her friends are displayed and the email body is prefilled automatically with the

information about the events and the hotels. The message can be edited by Maria

before sending. It is noteworthy to remark that Maria is not con- strained to a pre-

defined flow: for example, she could directly move events from “Selecting” to

“Communicating”, thus deliberately skipping the “Comparing” or the “Housing”

container.

 The EFESTO Platform

93

Procedure

The study took place in a quiet and isolated area in the main conference room

where we installed the study apparatus 30 minutes before the interactive session.

Two HCI researchers were involved in the study. In particular, one (facilitator)

was in charge of introducing users to the study and following them during the

scenario accomplishment; the second one (observer) took notes and was in charge

for recruiting and scheduling the participants.

Each participant interacted for about 30 minutes for a total of 4 hours. They

followed the same procedure. First, each participant was asked to sign a consent

form. Then, the facilitator showed a quick demo of EFESTO and TUX features on

a 15” laptop. Then, the participant was invited to complete the scenarios (also re-

ported on a sheet) by using a 15” laptop. At the end, each participant filled in a

printed version of AttrakDiff questionnaire.

Data Collection

Different types of data were collected during the study. In particular, during the

system interactions the observer took notes about significant behaviour or exter-

nalized comments. All the interactions were audio-video recorded to extract the

participants’ utterances and comments. The set of collected notes was extended by

video and audio analysis, performed by two researchers (audio transcription, dou-

ble-check, analysis following a semantic approach [19]).

After performing the scenario, the participants filled in a printed version of

AttrakDiff10 questionnaire, that helped us to understand how users personally rate

the usability and design of our system. In fact, with the help of pairs of opposite

adjectives, users can indicate their perception of the system. These adjective-pairs

make a collation of the evaluation dimensions possible. This questionnaire records

both the perceived pragmatic quality, the hedonic quality and the attractiveness of

an interactive system. In particular, thanks to AttrakDiff, the following system

dimensions can be evaluated:

 Pragmatic Quality (PQ): describes the usability of a system and indi-

cates how successfully users are in achieving their goals using the sys-

tem;

10 http://attrakdiff.de/

 The EFESTO Platform

94

 Hedonic Quality - Stimulation (HQ-S): Mankind has an inherent need

to develop and move forward. This dimension indicates to what extent

the system can support those needs in terms of novel, interesting, and

stimulating functions, contents and interaction- and presentation-styles;

 Hedonic Quality – Identity (HQ–I): indicates to what extent the system

allows the user to identify with it;

 Attractiveness (ATT): describes a global values of the system based on

the quality perception

Hedonic and pragmatic qualities are independent of one another, and con-

tribute equally to rating attractiveness.

Results and Discussion

The main results of this study come from the AttrakDiff™ questionnaire. Figure

4.12 depicts a portfolio diagram that summarizes the hedonic quality (HQ) and

pragmatic quality (PQ) system performances according to the respective confi-

dence rectangles. In particular, in the portfolio-diagram the values of hedonic

qualities are represented on the vertical axis (bottom = low value). The horizontal

axis represents the value of the pragmatic quality (left = a low value). With re-

spect to this representation, EFESTO was rated as "neutral", even if the confi-

dence interval represented as a small dark rectangle around EFESTO, overlaps in-

to the neighbouring zones. This indicates that there is room for improvements in

terms of usability. In terms of hedonic quality, the users are stimulated by

EFESTO, but there is still room for improvements. The pragmatic quality confi-

dence interval is quite large. This could be attributed to the limited participant

sample who had varying experience with other similar systems and knowledge

about tasks performed.

Another perspective of the AttrakDiff™ questionnaire results is provided by

the diagram shown in Figure 4.13. In this presentation, hedonic quality distin-

guishes between the

 The EFESTO Platform

95

stimulation and identity aspects. The attractiveness (ATT) rating is also presented.

In terms of pragmatic quality, EFESTO meets ordinary standards even if it is lo-

cated in the average region. Thus, we should improve assistance to users. With re-

gard to hedonic quality – identity (HQ-I), EFESTO is located in the average re-

gion. With respect to hedonic quality – stimulation (HQ-S), EFESTO is located in

the above-average region, thus meeting ordinary standards. Further improvements

are needed to motivate, engage and stimulate users even more. Finally, being the

system’s attractiveness value located in the above-average region, the overall im-

pression is that it is very attractive. The diagram shown in Figure 4.14 provides a

detailed view of the rating, given by participants to the AttrakDiff adjective-pairs

questions, that determined the values of the PQ, HQ-I, HQ-S and ATT dimensions

discussed above.

Figure 4.12: Portfolio with average values of the dimensions PQ and HQ and the respective

confidence rectangles of the system

 The EFESTO Platform

96

Figure 4.13: Mean values of the four AttrakDiff™ dimensions of our system

From the qualitative data collected with notes and audio-video analysis, dif-

ferent usability problems emerged, for example:

 drag&drop mechanisms are required for including data sources and

containers from the left tool bar into the workspace;

 the font size is too small for a 15-inc laptop;

 multiple selection and filter mechanisms misses in data sources and

containers;

 a button for deleting all data in a container misses;

 data sources and containers have to be synchronized.

 The EFESTO Platform

97

Figure 4.14: Mean values of the AttrakDiff™ adjective-pairs for EFESTO

4.7 Conclusion

The studies presented in the previous sections, allowed us to validate the meta-

design model in different contexts and to iteratively improve the EFESTO plat-

form. In particular, the emerged requirements lead to the introduction of the pol-

ymorphic data source and the TUX principles.

 The EFESTO Platform

98

In light of the results of the studies, the meta-design model can be consid-

ered mature and general enough to allow a successful platform customization to

different domains. With respect to the polymorphic data source and TUX princi-

ples integrated in EFESTO, only preliminary evaluations have been performed.

However, early results appear encouraging but other studies should be performed

to improve and generalize these aspects.

 Linked Open-Data as New Data Source

99

Chapter 5. Linked Open-Data as

New Data Source

 Linked Open-Data as New Data Source

100

5.1 Introduction and Motivations

At the end of 2015, the site programmableweb.com listed more than 14000 API to

retrieve data or exploit functionalities. Despite the wide availability of data

sources, due to the specific and diverse end users’ information needs often no data

source can satisfy these needs, as emerged during our field studies (see Section

4.6).

This negatively impacts on the mashup quality. According to [23], com-

pleteness, together with accuracy, timeliness, and availability, is a dimension of

data quality. Data sources available nowadays refer to a portion of a domain and

often do not include many details. It is sometimes possible to overcome this limi-

tation by composing different data sources, but, often, when the end users’ infor-

mation need is more specific, no data source could provide the useful information.

This is an important limitation in exploiting mashup platforms in real contexts.

To overcome this lack of information and better satisfy the end users’ infor-

mation needs, an original contribution of this PhD research is the definition of a

new polymorphic data source built upon the Linked Open Data cloud [35]. It is

called polymorphic because it provides information that might change with re-

spect to the data sources of which it is composed.

The polymorphic data source is built by exploiting the huge amount of in-

formation available in the Linked Open Data (LOD) cloud. In 2009, Tim Berners-

Lee defined Linked Data as “a set of best practices for publishing and connecting

structured data on the Web” [18]. The goal of the Linked Data project is to pub-

lish data so that they are readable by a human and by an automatic agent. The

LOD are Linked Data distributed under an open license that allows its reuse for

free. At the time of this thesis, there are more than 1000 KB datasets published in

the LOD cloud 11.

Nowadays, one of the biggest KBs in the LOD cloud is DBpedia (the struc-

tured version of Wikipedia). The DBpedia English version describes 4.58 million

things, out of which 4.22 million are classified in its ontology. In the DBpedia on-

tology, there are 685 classes. Thanks to the availability of this huge amount of in-

formation and its semantics structured in the DBpedia ontology, DBpedia has

been chosen as the starting point to create the polymorphic data source.

11 https://datahub.io/dataset

 Linked Open-Data as New Data Source

101

An annotation algorithm, described in Section 5.3, has been developed to

annotate each attribute of each service available in a platform with a class of the

DBpedia ontology. Each class has to be semantically similar to the attribute.

5.2 Polymorphic data source: a source for many

purposes

To explain the idea of a polymorphic data source, let us consider the following

scenario that refers to a typical situation in which laypeople want to mashup ser-

vices, but at a certain point they leave it because they do not find useful data

sources. “John is using a mashup platform. He adds the SongKick service to his

workspace to find upcoming musical events in his city. He also needs to retrieve,

for each event artist, a list of related videos. For this purpose, John composes

SongKick artist attribute with YouTube. Now, John has two widgets in his work-

space: SongKick and YouTube; the first allows him to search upcoming musical

events and the second automatically performs a search (with the artists’ name)

each time John clicks on a specific musical artist in the list of upcoming events.

Afterwards, he wants to know, for each artist, details such as genre, starting year

of activity and artist photo. Searching for useful services on the composition plat-

form, John does not find any service that satisfies his needs. Thus, John is not

supported anymore by the platform and he should go to the Web for a usual

(manual) search for the specific information. Likely, John has been warned that a

new feature (i.e., the polymorphic data sources) is available. Thus, to retrieve the

desired information, John expands the SongKick artist attribute with the polymor-

phic data source. When he chooses this source, the platform shows a list of new

properties related to the concept of musical artist. Thus, John decides to create the

new data source with the genre, the starting year of activity and the artist photo

properties. Henceforward, John can find a list of upcoming events on SongKick

and can visualize the additional artist’s information on the polymorphic data

source by clicking on a specific artist on SongKick (Figure 5.1)”.

 Linked Open-Data as New Data Source

102

Figure 5.1: Composition of DBpedia polymorphic data source with SongKick artist attribute.

In the previous scenario, John could continue to compose SongKick with the

same polymorphic data source starting from other SongKick attributes. For each

attribute that John decides to expand, the polymorphic data source provides dif-

ferent properties related to the semantics of the starting attribute (for example, for

the SongKick place attribute, properties like borough, census, year and de-

mographics should be shown). Thus, this type of data source is considered poly-

morphic because it can provide different information (properties) according to the

data source attribute that is selected. On the contrary, the classic data sources

(YouTube, Wikipedia, etc.) provide the same properties independently of the se-

lected attribute.

With the join function the user composes a service A with a service B, in or-

der to expand the results of service A with details provided by service B. This

composition is assisted by a wizard procedure that the user activates by clicking

on a gearwheel button in the upper right corner of the service widget. By clicking

on this icon, the user 1) selects the attribute that he wants to expand, 2) selects the

data source from which to gather information (DBpedia in our case), 3) chooses a

visual template to visualize the new results and finally 4) uses drag&drop to map

a subset of service attributes into the visual template. The fourth step is the most

interesting for the aim of this data source. In fact, while composing a service with

 Linked Open-Data as New Data Source

103

another ‘traditional’ service the list of attributes in step 4 is always the same, by

choosing the polymorphic data source the list of attributes is different in relation

to the semantics of the selected attribute during step 1.

In the current implementation, the service that provides details is shown as a

window only when the user clicks on a specific item (e.g., click on “U2” artist in

Figure 5.1). This visualization emerged as requirement during the users’ study de-

scribed in section 4.3.

5.3 An algorithm for data source annotation

This section describes a semi-automatic algorithm that creates semantic annota-

tions for services available in a composition platform. Its performance evaluation

is also reported.

5.3.1 Generation of a set of candidate classes to annotate

attributes

In order to create this polymorphic behaviour, a mapping step is required between

all data source attributes registered in the platform and the DBpedia ontology

classes. In general, this problem falls in the ontology matching area. In order to

start from consolidated approaches, the methodologies surveyed in [46, 70] were

investigated with the aim of creating an ad-hoc solution based on the literature,

without the pretension of building a new ontology matching methodology. Fur-

thermore, a great deal of specific literature in the semantic web area has already

been produced for the problems of semantic annotation of a service [78]. These

approaches have been taken into account to design the proposed algorithm.

The proposed solution can be classified as a semi-automatic and instance-

based annotation algorithm. As is described in the following, it is defined as semi-

automatic because a user has to provide a set of example queries (about 10) when

a data source is registered in the platform. Furthermore, it is defined as instance-

based because it infers a set of candidate classes to annotate the attributes starting

from the results (instances) of the queries. The main goal of the algorithm is to

annotate each attribute of each service with a DBpedia class that is semantically

similar to the attribute. The algorithm is reported in Table 5.1. The criterion for

choosing the most important class, as specified in line 12 of Table 5.1, is illustrat-

ed in Section 5.3.2.

 Linked Open-Data as New Data Source

104

Table 5.1: The instance-based semi-automatic annotation algorithm

1:
2:

3:

4:
5:

6:

7:
8:

9:

10:
11:

12:

13:
14:

Input: Set T of Triples t=(s,A,Q), s is a data source, A is a set of attributes a for s, and Q is a

set of queries on s
Output: Set R of results r=(s, L), s is a data source, L is a set of <ai,li> where a is an attrib-

ute of s and l is its label

for each t ∈ T do

create I as empty set of instance results for queries and an empty set M

for each q ∈ Q do

 query s by using q and collect instance results into I

end for

for each attribute a of s do

 create L_temp as empty set of labels for a

 for each i ∈ Ia do

 query DBpedia by using value of i and obtain a set C of classes

 put values of C into L_temp

 end for

 calculate most important class l in L_temp and put <a,l> into L

end for

end for

An example of the algorithm execution on a real data source is here report-

ed. Let us consider SongKick data source s and a set Q of queries on it (e.g., Lon-

don, Liverpool, Rome). This set Q is manually provided only once at the time of

service registration in the platform. Each instance of the SongKick results is char-

acterized by the set of attributes A= {artist, place, event_type, event_name, date}.

The algorithm starts by executing all the queries in Q on SongKick and by collect-

ing all the results in set I. For each attribute ai in A, the algorithm considers all the

instances selecting only the ai attribute values. For example, after having queried

SongKick with queries in Q, for the artist attribute the algorithm creates set Iartist=

{Ligabue, U2, One Direction, Taylor Swift,...}, that is a set of musical artists who

will perform at places stored in Q. The algorithm uses each instance of Iartist to

query DBpedia. The aim is to find the same instance of each element in Iartist as a

DBpedia thing and add its classes in set L_temp. Obviously, although the instanc-

es of each attribute have the same meaning (for example, all artist instances are

singers), not all the retrieved DBpedia things are instances of the same class.

Thus, at the end of the execution on all the attributes, the results appear as shown

in Table 5.2, where the Class column indicates the DBpedia classes inferred for

each attribute and the % column indicates the frequency of the classes at the end

of DBpedia queries. Furthermore, when the algorithm queries DBpedia, some-

times the retrieved things are wrongly classified. For example, when DBpedia is

queried with the ‘Ligabue’ string, three thing instances of different classes are re-

trieved: one instance of Artist (Luciano Ligabue, singer), one instance of Agent

(Antonio Ligabue, painter) and one instance of Italian_opera_singer (Ilva Liga-

bue, opera singer). Obviously, the second and third things are false positives that

create noise in the set L_temp. However, it is empirically observed that this noise

represents only a tiny percentage (typically less than 4%). For this reason, no clas-

ses less than 4% are considered in the rest of the algorithm.

 Linked Open-Data as New Data Source

105

Table 5.2: Candidate classes for annotable attributes of the SongKick data source; the Class

column indicates the DBpedia class associates; the % coloumn indicates the frequency

of each class

Artist EventType Location

Class % Class % Class %
Agent 14 Event 25 Place 17

Work 13 FilmFestival 25 Settlement 11

MusicaWork 12 Organization 13 PopulatedPlace 11

Organization 7 Television 13 Work 6

Album 7 Agent 12 Album 6

Person 7 TelevisionShow 12 MusicalWork 6

Band 6 Agent 6

Artist 6

Organization 6

Single 5 Building 6

MusicalArtist 5 Architectural 6

… … … …

Until now, the algorithm has collected a set of promising (candidate) classes

to annotate attribute data sources. The easiest annotation solution could be to se-

lect the most frequent class (In Table 5.2 Agent for Artist, Event for EventType

and Place for Location), but the performance of this solution is improved by the

second step of the proposed algorithm that takes into account both the class fre-

quency and the ontology tree structure.

5.3.2 Choosing the best class from the set of candidates

The starting point for choosing the best class for each data source attribute is the

set of promising classes that the algorithm has built in the previous step. The goal

of the next step is to assign to each class in Table 5.2 a rating that takes into ac-

count both the class frequency and the ontology tree structure. In the end, the class

with the highest score is used to annotate the service attribute. To explain why the

tree structure is important, consider the DBpedia sub-tree in Figure 5.2. In that

figure the sub-tree of the DBpedia ontology is depicted; it has been built by con-

sidering, for an easy explanation, the first ten candidate classes of the attribute

Artist in Table 5.2. If the algorithm annotates the Artist attribute with the most

frequent class, then the Agent class (14%) will be chosen. However, by looking

inside the semantics and the properties that characterize this class, it is evident

that the Agent class is too general for the concept of the musical artist of the

SongKick Artist attribute. We need to choose a more specific class. There are two

aspects to consider, in order to annotate data sources with the best classes: the

class coverage and the number of properties. The class coverage is the percentage

of retrieved DBpedia instances covered by each class (node percentages in Figure

 Linked Open-Data as New Data Source

106

5.2) and it is calculated as sum of class percentage with all its sub-class percent-

ages. This value is higher in the ontology top level classes and vice versa, because

each class also cover the sub-class instances. On the other hand, the more specific

is the class, the more properties the user can choose when creating the polymor-

phic data source. For this reason, the proposed algorithm tries to find a trade-off

between the class coverage and the number of properties.

Figure 5.2: Sub-tree of the DBpedia ontology built by using the SongKick artist attributes.

For each node, the percentage indicates the class coverage

In order to take into account these aspects, the x-value is introduced. It is an

index that quantifies the semantic similarity between a class and an attribute con-

sidering both the frequency and the ontology structure. In particular, to consider

the ontology structure, the algorithm starts by generating all the combinations of

the sub-trees built with the classes in the list of candidates. The length of these

groups ranges from 2 up N (where N is the number of candidate classes of an at-

tribute). For each class in these sub-trees, the algorithm calculates the x-value. At

the end of the computation, each class has many x-values, but only the highest

value of each class is considered for the final ranking. The generation of these

groups is performed to explore all possible paths in the ontology tree, as also per-

formed in [70]. In particular, when the algorithm generates all sub-trees, new clas-

ses could be added to the candidate list. For example, let us consider the Figure

5.2 and suppose that the MusicalWork class is not generated in the candidate list

of Table 5.2. During the generation of all sub-trees, when the Single and Album

classes are used to create a sub-tree, also MusicalWork is considered because it is

their common ancestor. Thus, MusicalWork is added in the candidate list and its

x-value is calculated. Choosing the MusicalWork, or an ancestor in general, the

coverage could be higher than its sub-class coverage, maintaining a good number

of properties that describe the semantics of the considered data source attribute.

 Linked Open-Data as New Data Source

107

The formula of an x-value that estimates the power of a class into each sub-

tree is:

.

Let us analyse in detail each component. The first one is classAncestorRatio.

This value takes into account the coverage of the current class with respect

to the coverage of the first common ancestor in the sub-tree. To penalize classes

in the higher levels (such as the ancestors), the numerator and denominator are

multiplied by the nLevelScore, a number that ranges from 1 to 100 and it is calcu-

lated as:

In this formula, the OntologyDepth indicates the maximum depth of the on-

tology (7 in DBpedia), while classLevel specifies the depth of the considered

class. It is evident that nLevelScore is high in deeper levels and low in higher lev-

els. In this way, in the classAncestorRatio, the classes at higher levels are penal-

ized.

The second component in the x-value is the parentPower. It quantifies the

impact of the common ancestor with respect to all the classes at the same level.

In this component, %TotRootLevel is the sum of the coverage rate of all

classes at the same level of the sub-tree root. The %TotRoot is the coverage rate of

the sub-tree root. This component is introduced in the x-value to solve the prob-

lem of the class sparsity in a tree. Let us consider in the Figure 5.2 the Work and

Agent classes. When sub-trees with Work or Agent as ancestors are generated,

this component has a high value in Agent sub-classes. In this way, the x-value re-

wards sub-classes in the Agent branch instead of those in the Work branch.

The third component is the classPower, which indicates the weight of the

considered class in the sub-tree. In classPower, the %class is the percentage of the

 Linked Open-Data as New Data Source

108

class considered in the sub-tree and %allClasses is the sum of the percentage of

all classes in the considered tree.

At the end of the generation of all trees and the calculation of the x-values,

the list of candidate classes is expanded with all the new ancestor classes of the

generated sub-tree. Each class has several ratings, one for each group in which it

appears. The class with the highest score is selected to annotate the service attrib-

utes.

5.3.3 Performance evaluation of the annotation algorithm

To the best of our knowledge, no datasets with data sources attributes exist anno-

tated with DBpedia class. Thus, to establish the performance of the algorithm, two

experts created and manually annotated a set of 7 services (for a total of 18 an-

notable attributes) by using DBpedia classes. In fact, not all the services attributes

can be annotated with a DBpedia class (i.e. URL attributes). Furthermore, due to

the nature of the algorithm, the numerical attributes (ticket price, temperature,

humidity, height, weight, etc.) cannot be annotated because it is impossible to in-

fer the classes from numerical values. As described in section 5.4, this limit can

be overcome by combining the proposed approach with natural language pro-

cessing of the attribute name [49, 78].

To evaluate the performance of the automatic annotation algorithm, a new

metric called Accuracy is introduced. First, a score has been associated with each

attribute comparing its automatic annotation to the manual one (AAA stands for

Attribute Automatically Annotated; AMA stands for Attribute Manually Annotat-

ed). In particular:

 10 points if AAA = AMA;

 8 points if AAA is at the same level of AMA (not the same, but very similar

semantic);

 7 points if AAA is 1 level up/down from AMA as a sub-class or a super-

class;

 5 points if AAA is 2 levels up/down from AMA as a sub-class or a super-

class;

 0 points in all other cases.

The Accuracy of the overall automatic annotation is calculated as:

 Linked Open-Data as New Data Source

109

In the Accuracy formula the numerator is the sum of the accuracy of all the

attributes, instead the denominator is the sum of the MAXscore that is the maxi-

mum accuracy that an attribute can have (10 in our case). The final accuracy rang-

es from 0 to 100. The Accuracy is calculated both for the annotation performed by

associating the most frequent classes in Table 5.2 (baseline) and for the annotation

performed by associating the classes with the proposed algorithm.

Table 5.3: Accuracy comparison between the baseline and the algorithm

Accuracy

Baseline 56%

Algorithm 91%

As shown in Table 5.3, it is evident how important it is to consider the on-

tology structure during the automatic annotation procedure. In fact, in the latter

(91%) the accuracy is clearly improved.

This metric is quite different with respect to the ones such as precision and

recall used for the service semantic annotations [49]. In fact, the classic precision

and recall consider true and false values, if the automatic annotation matches the

manual one. However, in our case, we can also consider as good annotations clas-

ses like super-classes/subclasses, but penalizing them because they do not match

exactly the manual annotation. The penalizing factor has been empirically estab-

lished.

5.4 Conclusions and future work

This chapter describes a polymorphic data source, which aims to address an im-

portant limitation that affects the use of a composition platform in real contexts. In

order to build this new polymorphic data source, an annotation algorithm has been

developed. Early evaluation results indicate the efficacy of the polymorphic data

source thank to the quality of the annotations produced by the algorithm.

Although the algorithm performance appears encouraging, the proposed al-

gorithm does not aim to solve ontology matching problems. It is only based on lit-

erature evidences and is an ad-hoc solution for the specific problem. Thus, one

aspect that could be addressed in the future is the improvement of the algorithm

by investigating techniques as, for example, natural language processing [49, 78],

to improve the annotation accuracy and to annotate non-annotable attributes (e.g.,

 Linked Open-Data as New Data Source

110

the numerical attributes). Finally, user studies are planned to evaluate the benefits

of a polymorphic data source.

 Cross-Device Mechanisms to Mashup Mobile Devices

111

Chapter 6. Cross-Device

Mechanisms to Mashup Mobile

Devices

 Cross-Device Mechanisms to Mashup Mobile Devices

112

6.1 Introduction

Mobile devices, such as tablets and smartphones, are widely available today. One

of the more recent contribution of this PhD research is a novel solution to exploits

the physical presence of different mobile devices held by a group of users, and

cross-device mechanisms to create mashups [11].

For more than the last two decades, cross-device systems have been envi-

sioned to support people during co-located collaborative group work [17, 85].

Most proposals involve different types of devices and often include large interac-

tive displays [6]. Very recent approaches, however, are based on mobile devices,

because in co-located groups cross-device interactions are much more likely to

occur on personal mobile devices than interaction with large, expensive displays

[6, 44, 58, 60, 75, 76]. Designs for mobile cross-device interactions have been al-

ready proposed, but they mostly support simple tasks, such as file transfer (e.g.,

photos, videos, contacts) across devices [25, 27, 44, 45, 58, 59, 76, 89].

With respect to such works, we aim to support complex information seeking

and sensemaking tasks that require the mashup of data from different data sources

(e.g., web sites or apps displayed on different mobile devices) by multiple group

members. As pointed out in this thesis, today such tasks are typically supported by

mashup tools that are not conceived for supporting co-located groups of people

but rather single users [2, 25] or users that collaborate remotely [5, 52]. There is

still little or no support in combining data or Web search results from multiple

mobile devices. Existing mobile devices, operating systems and apps are typically

not designed for user experiences which seamlessly cross devices; thus people in

co-located groups are forced to tedious, time-consuming, and error-prone verbal

or written exchange of information about queries to perform and retrieved results

[44].

This chapter describes a mashup solution consisting of a set of cross-device

mechanisms that allow group of users to formulate their queries and reconfigure

the data flow between different mobile devices by physically rearranging them on

a desk and/or performing cross-device touch gestures on their display. Our design,

enabled by the HuddleLamp technology (see Section 6.3) [75], considers the desk

as a physical workspace in which data sources are materialized in space by the

mobile devices that display them. In order to quickly express the situational in-

formation needs of the group, data sources can be flexibly combined by moving

the devices around on the desk or by performing touch gestures.

 Cross-Device Mechanisms to Mashup Mobile Devices

113

We first elicited the set of interaction mechanisms during a user study. Such

mechanisms were then implemented in a prototype that was assessed during a uti-

lization study whose results are reported. We have also planned an experiment to

compare if and how our system outperforms traditional tools and mechanisms in

supporting group of co-located users that need to execute data composition tasks.

6.2 Elicitation study

To facilitate users’ idea collection and to better understand their mental model

about the addressed data composition tasks, we decide on an elicitation study,

with carefully selected materials, questionnaires, and tasks.

In order to foster the elicitation of different suggestions, comments and ex-

planations by the involved participants, we used the “partners technique”[64] that

consists in performing several focus groups of partners. By enabling partners to

fruitfully build upon one another’s ideas and asking them to decide on a single

preferred action, we hoped to facilitate more reflection and discussion and to elicit

more diverse opinions about the possible designs. Similar to [60, 82], our sessions

therefore contained an element of co-creation beyond pure elicitation. Partici-

pants were encouraged to demonstrate their ideas by using physical paper proto-

types, pens and papers, so that they would think about the capabilities and af-

fordances of mobile device form factors instead of technological restrictions (see

Figure 6.1). As described later, this study organization enabled participants to

provide many novel, elaborate indications, including some details on physical in-

put and visual output. The study protocol was preliminarily assessed by involving

two groups of four users each.

 Cross-Device Mechanisms to Mashup Mobile Devices

114

Figure 6.1: A group discussing and working with paper prototypes during the elicitation

study.

6.2.1 Rationale

The goal of our study was the elicitation of touch gestures and/or physically de-

vice arrangement in space to perform the typical data composition operations that,

in technical terms, are: union of data sources, join of data sources (also called

merge in many mashup tools [34]), and data visualization. We have chosen these

tree operations since they are the most common operations allowed by mashup

tools [10, 34]. In particular:

 the union operation produces one dataset obtained by composing the

datasets returned by different data sources,

 for the join operation, given two data sources A and B, mashups give

the possibility to create a data synchronization schema so that, to query

B, users have to click an instance on A. This synchronization consists in

linking an attribute of A with the B input;

 the data visualization operation shows the dataset returned by a data

source according to a visualization technique.

We envisioned the union, join and data visualization operations respectively for

the following three tasks:

T1) to query multiple data sources, each displayed on a different device, typ-

ing a keyword just once on one device. The synchronized datasets remain on each

device and the user performs a “visual” union of them;

 Cross-Device Mechanisms to Mashup Mobile Devices

115

T2) to query the data source on the device B with portions of text displayed

on the device A;

T3) to visualize on a target device T the data coming from another source

device S; the visualization offered on T (e.g., map) could be different from that on

S (e.g., list of items).

6.2.2 Task scenarios

In order to facilitate the participants’ understanding of the usage context, we pro-

posed three scenarios, each addressing one task. In this way, participants were

more focused on discussing a specific topic. A fourth scenario was more complex

and required the execution of both tasks T1 and T3. The aim of this last scenario

was to bring out inconsistences in the proposed solutions: as emerged during the

pilot study, it happens that the same interaction mechanism is proposed for differ-

ent purposes.

In the first scenario, addressing task T1 (for union operation), participants

had to find videos of the “U2” rock band by querying the sites YouTube, Vimeo

and Dailymotion, each displayed on a different device. They had to execute the

query just once on one of the three devices, avoiding re-typing the same query on

the other devices.

In the second scenario, addressing task T2 (for join operation), the partici-

pants were asked to use the SongKick site on a smartphone to search for upcom-

ing concerts in London. When a concert was chosen, they had to find details (e.g.,

recordings, photos) about the concert singer on Wikipedia, which was available

on a second smartphone.

In the third scenario, addressing task T3 (for data visualization operation),

the participants interacted with the site Zoopla to look for a property in different

districts of London. Zoopla provided a list of properties and the participants had to

visualize them as pins on Google Maps available on a tablet.

Finally, the fourth scenario, addressing both T1 and T3 tasks, required look-

ing for an apartment in different districts of London using Zoopla. Further infor-

mation on pollution and public transport in those districts, retrieved by using the

same keywords (e.g. London Stratford) and visualized by two sites available on

two further smartphones, had to be taken into account (T1). Finally, apartments,

air pollution stations and bus/metro stations had to be visualized on Google Maps

displayed on a tablet (T3).

 Cross-Device Mechanisms to Mashup Mobile Devices

116

6.2.3 Participants

For this study we recruited a total of 25 participants (6 female) aged between 20-

28 years (x̅=22.6, SD=1.95). They were students at the third year of the bachelor

degree course in Computer Science. They were randomly allocated into 5 groups.

As revealed by our post-test questionnaire, they were familiar with smartphones

and tablets, but they had no experience with mashup of information coming from

different web services.

6.2.4 Procedure

The study was performed in collaboration with another HCI researcher on two

consecutive days in a university laboratory. It consisted of 5 sessions, one for each

group. Three sessions took place the first day. In every session, the group sat

around a table and was provided with paper prototypes enabling the task scenarios

and sheets of paper and markers for sketching their suggestions. Each participant

was also provided with a sheet of paper reporting the four scenarios.

One of the HCI researchers gave a 10-minute presentation to explain the mo-

tivation for composing data coming from different sources, also showing exam-

ples of some traditional mashup tools. Moreover, a researcher briefly described

HuddleLamp and showed a 3-minute video demonstrating some examples of

HuddleLamp usage to simplify and introduce the participant to use the spatially-

aware features. No solutions for composing data sources were shown to avoid

any bias in the participants’ proposals. After reading aloud and commenting the

first scenario, the researcher asked participants how they would perform the sce-

nario activities. He also specified that they were completely free to propose any

data source composition idea, with or without spatial-aware features. The re-

searcher stimulated participants to elaborate new interaction ideas, which were al-

so expressed by sketching new paper prototypes or demonstrated by using the

available paper prototypes (e.g., a swipe gesture from one device prototype to an-

other). The researcher also encouraged the discussion on positive and negative as-

pects of the suggested solutions. Before moving to the next scenario, the group

had to agree on the interaction mechanisms they were proposing for carrying out

the assigned composition task. The same procedure was repeated for the other

three scenarios. The second researcher took notes. Each session was also audio-

video taped.

At the end of the session, group participants filled in a questionnaire com-

posed of 21 questions. Eleven questions aimed at collecting participant’s demo-

 Cross-Device Mechanisms to Mashup Mobile Devices

117

graphic data, and determining their expertise with mobile devices, programming,

data retrieval and composition. Four questions investigated participants’ under-

standing of and comfort with the proposed tasks. Two questions addressed the

perceived usefulness of the proposed interaction mechanisms for data source

composition. The last four questions addressed the pros and cons on the ideas the

participants suggested during the study.

6.2.5 Data collection

The data analyzed in the study were collected through: 1) the set of notes taken by

the researchers in the study sessions; 2) the audio recording of participants’ dis-

cussions; 3) the sketches drawn during the sessions; 4) the answers participants

gave to the questionnaire; 5) the videos recorded during the sessions.

Two researchers transcribed their notes and the audios and independently

double-checked some 65% of the material. The initial reliability value was 85%,

thus the researchers discussed the differences and reached a full agreement. The

transcripts were analyzed by thematic analysis following a semantic approach

[19]. The answers to the open questions of the questionnaire were analyzed

through the affinity diagram technique proposed in [72].

6.2.6 Results and Discussion

Each session lasted on average 70 minutes. The analysis of the four questions on

participants’ understanding of the study design revealed that the four tasks were

clearly understood by the participants, who did not have difficulties in realizing

what they needed to do during the study. Indeed, each question consisted of a Lik-

ert scale that ranged from 1 to 7 (1 very easy – 7 very difficult) and the results re-

vealed a good understating of the four tasks (T1 x̅ = 2.12, SD = 1.36; T2 x̅ = 2.4,

SD = 1.44; T3 x̅ = 2.32, SD = 1.41; T4 x̅ = 2.8, SD = 1.5).

In the following subsections, we discuss the interaction mechanisms that

were proposed by the participants. We also show how they were implemented in

the system prototype that was employed in the utilization study reported later in

this chapter. In the light of the solutions that users expressed for performing un-

ion, join and data visualization, we called the cross-device interaction mecha-

nisms: Query Broadcasting, Flying Join and Aggregation&Visualization.

 Cross-Device Mechanisms to Mashup Mobile Devices

118

Query Broadcasting

All the five groups involved in the elicitation study agreed that spatial proximity,

i.e., putting devices close to create a physical group, was the best solution for ac-

complishing the main requirement of scenario T1, i.e. for performing a union. In

fact, the participants proposed that, for automatically executing the query on each

device, they had to: 1) put the devices physically close to create a group and then,

2) query one of them to automatically broadcast the same query to the other de-

vices. This is the reason why we also call this mechanism Query Broadcasting. A

device can be simply removed from a group by placing it far from the group.

As an alternative solution, two groups also proposed device bumping, i.e.,

colliding the devices to create a virtual group that can be queried as in the previ-

ous case, similar to the synchronous gesture proposed in [45].

The final solution was to implement the spatial-aware mechanism based on

the spatial proximity of the devices. The design and implementation of the proto-

type then required us to deepen three aspects that superficially emerged during the

study. The first one regarded the feedback to show to the users when they create

and eliminate a group of devices. To notify users that a device is part of a group,

display borders of the grouped devices are highlighted in orange, as shown in Fig-

ure 6.2. This also provides feedback on how much a device should be moved

close to the others to be a part of a group since the orange borders appear only if

the devices are close enough. Moreover, it improves the system status visibility,

because all users can easily understand which devices are grouped even if they did

not create or see the group creation.

The second aspect we considered was the mechanism to broadcast the query.

In fact, different solutions were expressed by the participants. For example, one of

them said: “I like that when I move a device close to another one, the second de-

vice automatically executes the same query already performed on the first de-

vice”. However, this gives rise to the following problem: let us suppose that there

are two devices, not yet grouped, on which two different queries have been exe-

cuted. What happens when they are grouped? Which one broadcasts its query to

the other one? In the final design, we opted for broadcasting any query at group-

ing time; in other word, queries are broadcasted only after the group has been es-

tablished.

 Cross-Device Mechanisms to Mashup Mobile Devices

119

Figure 6.2: Example of Query Broadcasting.

The third aspect we deeply investigated was the distance threshold between

the devices to consider them a group. Some participants suggested that a small

distance should be kept between the devices; other participants said that devices

should adhere each other. However, we did not consider this second possibility,

because of the HuddleLamp constraint, which is not able to recognize the devices

if there is not a distance of at least 0,5 centimetres between them. Taking into ac-

count that up to five tablets can be positioned over the desk area recognized by

HuddleLamp, we empirically established that devices are grouped when the dis-

tance between them is in the range 0.5  3 centimetres.

Flying join

All the groups decided that to perform a join, i.e., to indicate that a piece of text

has to be used for querying the data source displayed on another device, the most

suitable mechanism is the directional flick. This solution is a spatial-aware gesture

 Cross-Device Mechanisms to Mashup Mobile Devices

120

performed on the device display for “launching” the selected portion of text in the

direction of the target device, where it will be automatically used for querying the

displayed sites (an interaction similar to the gesture described in [77]). Moreover,

two groups also suggested that this task could be performed by touching, for a

couple of seconds, a piece of text to activate a contextual menu, where they can

choose the target device from a list of devices on the desk. The second solution is

a spatial-agnostic interaction similar to the one proposed in [44]. Both the pro-

posed solutions were already compared in [77]: for large targets, directional flick

was significantly faster than radar (a technique very similar to the menu proposed

by the participants), but was inaccurate for small targets. Edge Bubbles, presented

in [76], enhances the flick technique; it was shown that it outperforms other meth-

ods like contextual menu and radar. Edge Bubbles consists in coloured semi-

circles around the edges of the screen, which act as visual proxies for remote de-

vices and indicate the direction in which the remote devices are located on the

desk. The locations of the bubbles are defined by imaginary lines connecting the

central point of the source device and the central point of the target devices. Each

bubble is located where this imaginary line intersects with the edges of the local

screen. The positions of the bubbles are updated in real-time and thus always re-

flect changes in the physical configuration of the devices. In the Edge Bubble

technique, dragging and dropping an item onto one of the edge bubbles means

copying the dragged item in the target device.

We adopted the Edge Bubble solution to implement the Flying Join. In par-

ticular, in our prototype dragging and dropping a piece of text onto one of the

edge bubbles generates a query on the target device with the dragged text as the

keyword. For example, in Figure 6.3 YouTube is queried by dragging and drop-

ping a specific singer’s name into the LastFm red rectangle. According to the sug-

gestions of some users participating in the successive pilot study, in order to im-

prove bubble affordance, in our final design, edge bubbles are represented as rec-

tangles instead of semi-circles, thus referring to tablet or smartphone shape (see

Figure 6.3). Furthermore, the size of a bubble is provisionally doubled when the

dragged text is approaching the proxy, because, during the pilot study users had

difficulty dragging a large piece of text into the small bubbles (compare the size

of the edge bubbles on the two devices represented in Figure 6.3).

 Cross-Device Mechanisms to Mashup Mobile Devices

121

Figure 6.3: Example of Flying Join.

Aggregation&Visualization

The third composition mechanism related to the data visualization operation con-

sists in synchronizing one or more source devices Si, 1 ≤ i ≤ n, and one target de-

vice T, so that data coming from S1…Sn are visualized in T. It is called Aggrega-

tion&Visualization because it allows the visualization on T of data gathered from

a single device or an aggregation of devices previously grouped with the Query

Broadcasting mechanism. The aggregated data are visualized according to the

visualization provided by T, for example, Google Maps.

Data visualization was the most debated operation during the study. Group 1

decided for the bumping between the source device and the target device, a syn-

chronous gesture as the one proposed in [45]. Groups 2 and 3 opted for a button

on the target device to open a popup window where the user can choose the

source device. Group 4 and 5 decided for spatial proximity, but this solution was

already used for the Query Broadcasting task. Such an inconsistency clearly

emerged during Scenario 4.

In the end, we implemented the proposal of Groups 2 and 3, i.e., a menu on

the target device T to select the source device S from which to visualize the data.

Moreover, as required by each group, we allowed the selection of not only a

source device S, but also devices grouped by using the Query Broadcasting

mechanism. When a user opens a site on T that provides a specific visualization

 Cross-Device Mechanisms to Mashup Mobile Devices

122

(for instance, Google Maps), in the title bar the button Decant12 is available (see

Figure 6.4a). By clicking this button, a pop-up appears, which lists all the devices

on the desk each identified by the name of the site it is executing. If multiple de-

vices have been grouped for query broadcasting, the name of the group, which has

been automatically created by the system by concatenating the site names, is dis-

played. The user chooses the source devices from the list. From now on, the target

device T visualizes the data gathered from the source devices S (Figure 6.4b).

Any data updating on S is immediately propagated on T. The synchronization be-

tween T and S can be cancelled by using the menu in T or by taking away S from

the table. Although at a first glance this can appear to be a spatial-agnostic tech-

nique, it also exploits spatial awareness system features, since T lists all the de-

vices currently on the desk.

(a)

(b)

Figure 6.4: Example of Aggregation&Visualization: (a) selection of Lastfm as source; (b) vis-

ualization of Lastfm items as pins on Google Maps.

12 We have used ‘Decant’ as metaphor of pouring and mixing wine in another container, where it

assumes the shape of the target container and the new flavour due to the mixing.

 Cross-Device Mechanisms to Mashup Mobile Devices

123

6.3 System Technical Details

In our view, the final software should be implemented as a plugin for mobile de-

vice browsers that enables the orchestration of web site data and functionalities

according to the cross-device interaction mechanisms, which emerged from the

elicitation study. Nowadays, this solution is hampered by technological limita-

tions like the strong heterogeneity of data formatting in web pages and the com-

munication lag between devices. At the current stage of our research, we are fo-

cusing on the design and evaluation of the composition paradigm. Therefore, we

have created a simplified environment reproducing, as accurately as possible, a set

of web sites for accomplishing the scenarios designed for testing the cross-device

interaction mechanisms.

The system installation consists in setting up the HuddleLamp desk hard-

ware (see Figure 6.1), already described in the related work, and deploying our

web application on a Meteor Web server [63]. Users interact with the application

using the web browser of the mobile devices connected to a Meteor server and

placed on the desk. Initially, the device displays a QR code that allows the lamp to

recognize each device on the desk. Once the device is recognized, the application

shows a homepage that acts as a hub, where the user can choose which of the

available sites will be displayed on that device.

Exiting solutions for cross-device interaction require the installation of ei-

ther hardware (in the environment [77, 82] or on the devices) or software (to man-

age the registration of devices [44] or the addition of a functionality [31]). Thanks

to HuddleLamp, no hardware or software needs to be installed on the mobile de-

vice, since users have just to open a web site. This aspect fosters the adoption of

this system in real contexts.

6.4 Utilization study

We designed a utilization study inspired by [44], i.e., a study in which participants

are required to perform real tasks using the system (or prototype). This study was

performed during the interactive session of the International Symposium on End-

User Development (IS-EUD) held in Madrid, Spain, during May 2015. The ses-

sion was open to both conference participants and external visitors and was wide-

ly advertised by the conference organizers before and during the conference days.

 Cross-Device Mechanisms to Mashup Mobile Devices

124

Since the aim was understand how novel cross-device mechanisms support

seeking and sensemaking tasks, in this study we addressed three research ques-

tions:

RQ1) Are users able to perform co-located collaborative tasks by exploiting

the proposed interaction mechanisms?

RQ2) Do users like the proposed interaction mechanisms to perform co-

located collaborative tasks?

RQ3) Would users prefer different interaction mechanisms for the three

composition operations?

6.4.1 Participants and Design

We were able to recruit a total of 13 participants (5 female), aged between 23 and

64 (x̅=32, SD=13.74). More specifically, the participants were:

 2 groups of technology experts (G1 with 3 participants, G3 with 4 partici-

pants), i.e. conference attendees who, according to the research papers they

presented at the conference or to the comments they provided during the in-

teraction, can be considered technology experts.

 2 groups of non-experts (G2 with 4 participants, G4 with 2 participants), i.e.

conference attendees without technical savvy (e.g. researchers of other disci-

plines than Computer Science or Engineering) or external visitors.

The study was presented to each group of participants as a demo that gave

them the opportunity to user the prototype to accomplish two scenarios. In Sce-

nario 1, the groups were asked to act as friends planning to move to the UK to

find a new job. They had to look for a property in a UK city (using the Zoopla

site), also considering factors like air pollution (using the UK Air pollution site)

and property proximity to bus/metro stations (using the Google Places site). To

evaluate the distance between properties, air pollution stations and bus/metro sta-

tions, they could use Google Maps to visualize the site results on the map. This

scenario was designed to stimulate users in performing Query Broadcasting (for

example, to query Zoopla, UK Air pollution and Google Places together using

keywords like London, Liverpool, etc.) and Aggregation&Visualization (for ex-

ample to visualize results on Google Maps) mechanisms.

In Scenario 2, participants were asked to act as a group of colleagues, who

were in Madrid to attend a conference. They wanted to spend an evening to a mu-

 Cross-Device Mechanisms to Mashup Mobile Devices

125

sic concert. Their goal was to find a concert in Madrid during the conference days

using Last.fm site. They could also use YouTube to search for videos related to

the concert singer(s) and Google Maps to locate the concert venue. This scenario

was designed to stimulate users to perform a Flying Join, for example to search

for a specific Last.fm artist on YouTube (by drag & drop of a Last.fm artist name

in the YouTube proxy), as well as to search for a specific concert venue (by drag

& drop of a Last.fm location name in the Google Maps proxy).

The scenarios execution order was counterbalanced across the four groups to

neutralise learning biases. Participants were asked to verbalize their thoughts and

comments on their actions according to the think-aloud protocol.

Figure 6.5: A group of four participants (not all visible) and the facilitator discussing during

the utilization study.

6.4.2 Procedure

The study took place in a quiet and isolated area in the main conference room

where we installed the study apparatus 30 minutes before the interactive session

(see Figure 6.5). Two HCI researchers were involved in the study. In particular,

one (facilitator) was in charge of introducing users to the study and following

 Cross-Device Mechanisms to Mashup Mobile Devices

126

them during the scenario accomplishment; the second one (observer) took notes

and was responsible for recruiting and scheduling groups of participants.

Each group interacted for about 60 minutes for a total of 4 hours. They fol-

lowed the same procedure. First, each group member was asked to sign a consent

form. Then, the facilitator showed a quick introduction to the three composition

mechanisms by using a 5-minute video (no bias was introduced since the video

showed different scenarios). Then, the group was provided with four Apple iPads

(9.7” diagonal) on the desk, already set with the Safari browser connected to our

web application. The group was invited to complete the scenarios S1 and S2, re-

ported on the two sides of a sheet, by using the available sites with or without the

presented special-aware features, as they preferred. At the end, participants filled

in an online questionnaire.

6.4.3 Data Collection & Analysis

Different types of data were collected during the study. In particular, during the

system interactions the observer took notes about significant behaviour or exter-

nalized comments. The set of collected notes was extended by video and audio

analysis, performed by two researchers following the same procedure performed

after the elicitation study (audio transcription, double-check, analysis following a

semantic approach [19]). All the interactions were audio-video recorded to extract

the participants’ utterances and comments.

After performing the two scenarios, the participants filled in an online ques-

tionnaire, which included the System Usability Scale (SUS) form with a further

22 statements. The SUS is a “quick and dirty” tool for measuring the system usa-

bility by means of 10 statements, rated by a 5-point Likert scale ranging from

Strongly agree to Strongly disagree [20]. It was chosen because it is high reliable

[14], technology agnostic (tested in the last 25 years on hardware, consumer soft-

ware, websites, cell-phones, etc.) and effective also for evaluating usability of

modern technology [21]. We extended the SUS questionnaire with 10 new state-

ments on the users’ background and 12 on the evaluation of the proposed compo-

sition mechanisms and the performed scenarios. Thus, the final questionnaire had

32 questions. All the quantitative questionnaire data were analysed by Statsplorer,

a novel software that guides researchers in performing inferential statistical tests

[83].

 Cross-Device Mechanisms to Mashup Mobile Devices

127

6.4.4 Results

System Usability and Learnabili ty

The 10 SUS questions gave us useful indications about the perceived system usa-

bility and learnability. The SUS global score was 68.3 (SD=10.6, 95% CI= [65.4 ,

71.2]) and in line with the average SUS scores (69.5) of one thousand studies re-

ported in [15]. To better summarize the meaning of our SUS score, we translated

the final score into a subjective label, according to the adjective rating scale intro-

duced in [15]. As shown in Figure 6.6, the vertical line indicates the positioning of

our system with respect to the two usability scales. Specifically, our system can be

seen as just good considering the Adjective Rating scale and, similarly, nearly ac-

ceptable considering the Acceptability Range scale.

Figure 6.6: System SUS score mapping the adjective ratings, acceptability scores, and school

grading scales.

We also investigated the effects of genre and expertise on the system usabil-

ity. A Mann-Whitney U test was adopted to perform this analysis. No significant

differences emerged for genre and expertise, as shown in Table 6.1.

Table 6.1: Mann-Whitney U test to assess the effects of genre and expertise on system usabil-

ity

 Perceived Usability with SUS score

Males x̅ = 1.84, 95% CI [1.8,1.9], SD = 0.03

Females x̅ = 1.83, 95% CI [1.7,1.9], SD = 0.09

Test U = 24.00, p = .6039

Experts x̅ = 67.50, 95% CI [63.4,71.6], SD = 5.51

Non-Ex x̅ = 69.17, 95% CI [58.2,80.2], SD = 13.74

Test U = 19.50, p = .885

According to [56], we split the SUS score into two factors, i.e. System

Learnability (considering statements #4 and #10) and System Usability (all the

other statements). In particular, the System Learnability score was 62,5 (SD=25.5,

95% CI= [55.6, 69.4]), while the System Usability score was 69.7 (SD=8.5, 95%

 Cross-Device Mechanisms to Mashup Mobile Devices

128

CI=[67.4, 72.0]). A T-Test revealed a significant difference at p < 0.05 (T-value =

2.63, P-Value = 0.01). Thanks to the observer notes and audio-video analysis, we

could associate the lower learnability score to some drawbacks related to the Ag-

gregation&Visualization mechanism. This is the most evident mechanism that

pushed users to ask for the support of a technical person (SUS statement #2), i.e.,

the help of the observer, or to learn different things before getting with this system

(SUS statement #10). i.e., to acquire further knowledge for the right task accom-

plishment.

Cross-device Mechanism Usability

The administered questionnaire included 12 statements (2 open questions and 10

close questions) to collect data on the perceived usability of specific aspects, in

particular on the mechanisms to perform the three composition operations and on

the system use in the specific scenarios. The closed questions were formulated as

a 5-point Likert scale ranging from Very difficult (1) to Very easy (5).

Answers to the three closed questions addressing each interaction mecha-

nism indicated a high level of perceived usability. The obtained values were: for

Query Broadcasting x̅=3.92, SD 0.86; for Flying Join x̅=4.00, SD=0.81; Aggrega-

tion&Visualization x̅=4.15, SD= 0.90. Indeed, participants had no problems in

understanding and performing the three mechanisms.

We also investigated the effects of genre and expertise for the usability of

the three composition mechanisms. For the analysis, a Mann-Whitney U test was

conducted and no significant differences emerged in all the cases, as shown in Ta-

ble 6.2.

 Cross-Device Mechanisms to Mashup Mobile Devices

129

Table 6.2: Details of the Mann-Whitney U test used to assess the effects of genre and exper-

tise on the interaction mechanisms

 Query

Broadcasting

Flying Join Aggregation&Visualization

Males x̅ = 3.75

95% CI [3.3,4.2]

SD = 0.66

x̅ = 4.13

95% CI [3.7,4.5]

SD = 0.60

x̅ = 4.38

95% CI [3.9,4.9]

SD = 0.70

Females x̅ = 4.20

95% CI [3.3,5.1]

SD = 0.98

x̅ = 3.80

95% CI [2.9,4.7]

SD = 0.98

x̅ = 3.80

95% CI [2.9,4.7]

SD = 0.98

Test U = 19.50

p = .8796

U = 22.50

p = .7367

U = 26.50

p = .3451

Experts x̅ = 3.86

95% CI [3.4,4.3]

SD = 0.64

x̅ = 4.14

95% CI [3.7,4.6]

SD = 0.64

x̅ = 4.43

95% CI [3.9,5.0]

SD = 0.73

Non-Ex x̅ = 4.00

95% CI [3.2,4.8]

SD = 1.00

x̅ = 3.83

95% CI [3.1,4.6]

SD = 0.90

x̅ = 3.83

95% CI [3.1,4.6]

SD = 0.90

Test U = 19.50

p = .8796

U = 24.00

p = .6817

U = 28.50

p = .2824

Perceived User Satisfaction

Besides evaluating each composition mechanism, we also assessed the perceived

satisfaction with respect to performing the two assigned scenarios. In particular,

we asked participants if they were satisfied with the ease and the amount of time

given to complete the scenarios. As a result, for Scenario 1, participants felt satis-

fied about the ease of completing the scenario (x̅=3.76, SD=0.72) and the required

amount of time (x̅=3.76, SD=0.83). For Scenario 2, however, they felt even more

satisfied about the ease of completing the scenario (x̅=4.14, SD=0.55) and the re-

quired amount of time (x̅=4.23, SD=0.93). These results revealed that the partici-

pants thought that the system adequately supported the two different co-located

collaborative scenarios.

Furthermore, we also investigated the effects of genre and expertise for the easi-

ness and the time given to perform the two scenarios. A Mann-Whitney U test

was conducted and no significant differences emerged in all the cases, as shown in

Table 6.3 and

Table 6.4.

 Cross-Device Mechanisms to Mashup Mobile Devices

130

Table 6.3: Details of the Mann-Whitney U test used to assess effects of genre and expertise on

the scenarios easiness

 Scenario 1 easiness Scenario 2 easiness

Males x̅ = 3.75

95% CI [3.2,4.3]

SD = 0.83

x̅ = 3.75

95% CI [3.2,4.3]

SD = 0.83

Females x̅ = 3.80

95% CI [3.5,4.2]

SD = 0.40

x̅ = 3.80

95% CI [3.5,4.2]

SD = 0.40

Test U = 18.00, p = .8113 U = 18.00, p = .8113

Experts x̅ = 3.86

95% CI [3.2,4.5]

SD = 0.83

x̅ = 3.86

95% CI [3.2,4.5]

SD = 0.83

Non-Ex x̅ = 3.67

95% CI [3.3,4.0]

SD = 0.47

x̅ = 3.67

95% CI [3.3,4.0]

SD = 0.47

Test U = 23.00, p = .8158 U = 23.00, p = .8158

Table 6.4: Details of the Mann-Whitney U test used to assess effects of genre and expertise on

the scenarios time

 Scenario 1 time Scenario 2 time

Males x̅ = 3.75

95% CI [3.08,4.42]

SD = 0. 79

x̅ = 4.38

95% CI [3.69,5.06]

SD = 0.99

Females x̅ = 3.80

95% CI [3.45,4.15]

SD = 0.40

x̅ = 4.00

95% CI [3.45,4.55]

SD = 0.63

Test U = 17.50, p = .753 U = 27.50, p = .2661

Experts x̅ = 3.71

95% CI [3.1,4.4]

SD = 0.88, n = 7

x̅ = 4.14

95% CI [3.4,4.9]

SD = 0.99, n = 7

Non-Ex x̅ = 3.83

95% CI [3.3,4.4]

SD = 0.69

x̅ = 4.33

95% CI [3.8,5.0]

SD = 0.75

Test U = 18.50, p = .7587 U = 19.50, p = .8768

System Usage and User Behaviour

The qualitative data collected with notes and audio-video analysis provided im-

portant hints on user behaviour, ideas and system improvements. The most signif-

icant problem observed and confirmed by the participants’ utterances was related

to the Aggregation&Visualization mechanism, sometimes confused with Query

Broadcasting. This problem occurred for three out of four groups. Indeed, when

these three groups tried to visualize for the first time Zoopla data in Google Maps,

they moved the Zoopla device close to the Google Maps device, thus communi-

cating a Query Broadcasting instead of Aggregation&Visualization. In these cas-

es, the groups were helped by the facilitator to remember the video previously

 Cross-Device Mechanisms to Mashup Mobile Devices

131

shown. No other help was needed. This problem is in line with the results ob-

tained during the elicitation study, where 50% of groups liked to change visualiza-

tion by moving the devices close and 50% by using a menu. More attention has to

be dedicated to this aspect in future work.

Minor problems were detected for the Query Broadcasting and the Flying

Join mechanism. For the former, we observed that participants took some time to

appropriate the spatial-aware cross-device mechanism. In fact, in two groups,

when they tried at the beginning of Scenario 1 to query different devices with the

same city name, they typed the same query on different devices. Only after some

seconds, they remembered that they could broadcast the query. For example, a

member of G4 said: “ops, we could search for London more quickly using the

function shown in the video”.

Regarding the Flying Join, the main problem observed is related to the way

it was implemented in the prototype. In fact, in a real setting, every piece of text

can be dragged from the web page onto the proxies, while, in our system, we nar-

rowed this possibility allowing users to drag only one specific piece of text (e.g.

the properties addresses from Zoopla) onto the specific proxies of Google Maps

and YouTube. This constraint limited some needs, which emerged during the

study. In fact, some users (in G1, G2 e G3) wanted to perform unforeseen Flying

Joins, for example, the drag of a pollution station from UK Air Pollution onto the

Zoopla proxy to find on the Zoopla device all the properties around a non-polluted

area.

We also collected important hints on how to improve the system usability.

One of the most important is related to the proxy memorability. In fact, to support

moving data across different devices, inspired by the Edge Bubble solution [76],

we created proxies as rectangles with the same colour of the toolbar shown on the

other devices. Some participants had difficulty remembering this association. Two

of them (in G2 and G4) suggested adding the site name or logo inside the proxy.

6.5 Discussion

The main goal of this study was to answer the three research questions. For RQ1,

about users’ ability to perform real co-located collaborative tasks by exploiting

spatial awareness mechanisms, we can say that users were able to exploit the de-

signed solutions in different co-located collaborative scenarios. According to the

questionnaire results, participants appreciated the easiness and efficiency in exe-

 Cross-Device Mechanisms to Mashup Mobile Devices

132

cuting the tasks required by the two scenarios (see Table 6.3 and Table 6.4). No

differences emerged between experts and non-experts, or between males and fe-

males. We also triangulated the quantitative questionnaire results with the qualita-

tive data (open questions, video, audio) to better answer RQ1. In particular, the

four groups were able to complete the scenarios, even though some problems re-

lated to the Aggregation&Visualization mechanism forced three groups to ask

once for help. As already highlighted, this is an aspect that needs further investi-

gation.

RQ2 addressed user satisfaction about the interaction mechanisms to per-

form co-located collaborative tasks. The questionnaire results showed a high level

of satisfaction about the proposed interaction mechanisms. No differences were

found between experts and non-experts, or between males and females (see Table

6.2). Useful indications emerged on how to further enhance the three interaction

mechanisms. For example, the proxy memorability could be improved by adding

the logo/site name inside, as suggested by some participants. It is worth remarking

that another study already investigated proxy usage, for example, to compare dif-

ferent solutions for cross-device interaction [76]. In that study only simplified

tasks in laboratory setting were performed, thus proxy memorability was not a

problem. Instead, it emerged in our study because it considered a more complex

and real situation. Finally, system implementation should be also improved in or-

der to allow Flying Join to and from any site.

About RQ3, i.e. if users would prefer different interaction mechanisms for

the three composition operations, participants provided some remarks only for the

Aggregation&Visualization mechanism. Indeed, in some cases, participants did

not immediately understand the right usage. Nevertheless, it took very little to re-

alize how to correctly interact. Since we want to reduce as much as possible users’

misunderstanding about the actions to perform, we are going to experiment some

alternatives for the Aggregation&Visualization mechanism.

Conclusion

133

Chapter 7. Conclusion and

future work

Conclusion

134

The research reported in this thesis focused on the definition of models and inter-

action paradigms to enable end users in creating pervasive workspaces by mash-

ing-up heterogeneous resources. In fact, despite the growing availability of

mashup tools, the composition paradigms they adopt are still difficult for non-

technical users. We grounded our work on experiences reported in literature about

new paradigms for mashup composition and on the lessons learnt on End-User

Development (EUD). EFESTO is the mashup platform that implements the main

results of the research work carried out. It supports end users in performing

mashups thanks to novel visual interaction paradigms; it allowed us to validate

our models and composition paradigms. The EFESTO three-layer architecture al-

lows domain customization activities, which simplify the composition languages

that represent a barrier for the adoption of mashup platforms by non-technical

people. Thus, this architecture enables all the stakeholders to contribute to the

overall process of creating mashup applications.

According to the requirements emerged in the field studies performed during

the iterative design, development and testing process, the research interests be-

came wider and new directions were investigated, leading to novel contributions,

i.e. the creation of a new polymorphic data-source based on Linked Open Data

and the implementation of Transformative User eXperience principles in

EFESTO. As last step, a novel interaction paradigm to perform mashup with mo-

bile devices is reported in this thesis. In particular, a set of interaction mecha-

nisms, both spatial-aware and cross-device, allows groups of users to perform

mashup by using mobile devices. These mechanisms were implemented in a pro-

totype and assessed during a utilization study. This is still work in progress, but

the first results appear encouraging and show that participants quickly managed to

use and appreciated the proposed spatial-aware cross-device interaction mecha-

nisms to perform co-located collaborative tasks. Interesting indications for im-

provements and further research also emerged.

As future work, we will introduce part of the knowledge built during this re-

search in the Internet of Things (IoT) technology. The current integrated technol-

ogies confer intelligence to any type of objects and connect them to the network to

be controlled remotely. Unfortunately, the behaviour of these objects is deter-

mined by specific programs, thus only programmers can do it. The challenge we

are going to address is to empower end-users to determine the behaviour of smart

objects.

As final remark, some parts of this thesis describe work that has been pub-

lished in articles of which Giuseppe Desolda is author. Such parts are Sections 3.2

Conclusion

135

and 3.4, Chapter 4, 5 and 6. Chapter 5 and 6 refer to work autonomously carried

out by Giuseppe Desolda, or in which his contribution has been preeminent. The

articles related to Sections 3.2 and 3.3 and to Chapter 4 have been written by

Giuseppe Desolda and other authors, in particular Prof. Maria F. Costabile, who

has been his supervisor, and other researchers of the IVU Laboratory of the Com-

puter Science Department of the University of Bari Aldo Moro (of which he is a

member). The collaboration has been primarily on models and methodologies

whose definition is based on the joint work of more people, everyone giving

his/her specific contribution. Even in such articles, the contribution of Giuseppe

Desolda has been very significant: he has implemented the mashup platform, he

has carried out the interaction design of the developed prototypes, he has played

an important role in the design and execution of the reported user studies.

References

136

References

1. Aghaee, S., Nowak, M., Pautasso, C. (2012). Reusable decision space for

mashup tool design. In: Proc. of ACM SIGCHI symposium on Engineering

Interactive Computing Systems (EICS '12). Copenhagen (Denmark). 25 –

28 June. pp. 211-220. ACM, New York, NY, USA.

2. Aghaee, S., Pautasso, C. (2014). End-User Development of Mashups with

NaturalMash. In Journal of Visual Languages & Computing 25(4), 414-

432

3. Altinel, M., Brown, P., Cline, S., Kartha, R., Louie, E., Markl, V., Mau,

L., Ng, Y.-H., Simmen, D., Singh, A. (2007). Damia: a data mashup fabric

for intranet applications. In: Proc. of International Conference on Very

Large Data Bases (VLDB '07). University of Vienna (Austria). 23 - 27

September pp. 1370-1373. VLDB Endowment,

4. Ardito, C., Bottoni, P., Costabile, M.F., Desolda, G., Matera, M., Piccinno,

A., Picozzi, M. (2013). Enabling End Users to Create, Annotate and Share

Personal Information Spaces. In Dittrich, Y., Burnett, M., Mørch, A.,

Redmiles, D. End-User Development - Is-EUD 2013. (Vol. LCNS 7897,

pp. 40-55), Berlin Heidelberg, Springer Verlag.

5. Ardito, C., Bottoni, P., Costabile, M.F., Desolda, G., Matera, M., Picozzi,

M. (2014). Creation and Use of Service-based Distributed Interactive

Workspaces. In Journal of Visual Languages & Computing 25(6), 717-726

6. Ardito, C., Buono, P., Costabile, M.F., Desolda, G. (2015). Interaction

with large displays: a survey. In ACM Computing Survey 47(3), 1-38

7. Ardito, C., Buono, P., Costabile, M.F., Lanzilotti, R., Piccinno, A. (2012).

End users as co-designers of their own tools and products. In Journal of

Visual Languages & Computing 23(2), 78-90

8. Ardito, C., Costabile, M.F., De Angeli, A., Lanzilotti, R. (2012). Enriching

archaeological parks with contextual sounds and mobile technology. In

ACM Transactions on Computer-Human Interaction (TOCHI) 19(4), 29

9. Ardito, C., Costabile, M.F., Desolda, G., Lanzilotti, R., Matera, M., Pic-

cinno, A., Picozzi, M. (2014). User-Driven Visual Composition of Ser-

vice-Based Interactive Spaces. In Journal of Visual Languages & Compu-

ting 25(4), 278-296

10. Ardito, C., Costabile, M.F., Desolda, G., Lanzilotti, R., Matera, M., Picoz-

zi, M. (2014). Visual Composition of Data Sources by End-Users. In:

Proc. of International Working Conference on Advanced Visual Interfaces

(AVI '14). Como (Italy). 28-30 May pp. 257-260. ACM, New York, NY,

USA.

11. Ardito, C., Costabile, M.F., Desolda, G., Latzina, M., Matera, M. (2015).

Hands-on Actionable Mashups. In Díaz, P., Pipek, V., Ardito, C., Jensen,

C., Aedo, I., Boden, A. End-User Development - Is-EUD 2015. (Vol.

LCNS 9083, pp. 295-298), Berlin Heidelberg, Springer Verlag.

12. Ardito, C., Costabile, M.F., Desolda, G., Latzina, M., Matera, M. (2015).

Making Mashups Actionable Through Elastic Design Principles. In Díaz,

P., Pipek, V., Ardito, C., Jensen, C., Aedo, I., Boden, A. End-User Devel-

References

137

opment - Is-EUD 2015. (Vol. LCNS 9083, pp. 236-241), Berlin Heidel-

berg, Springer Verlag.

13. Ardito, C., Lanzilotti, R., Costabile, M.F., Desolda, G. (2013). Integrating

traditional learning and games on large displays: an experimental study. In

Journal of Educational Technology & Society 16(1), 44-56

14. Bangor, A., Kortum, P., Miller, J. (2008). The system usability scale

(SUS): An empirical evaluation. In International Journal of Human-

Computer Interaction 24(6), 574-594

15. Bangor, A., Kortum, P., Miller, J. (2009). Determining what individual

SUS scores mean: Adding an adjective rating scale. In Journal of usability

studies 4(3), 114-123

16. Beringer, J., Latzina, M. (2015). Elastic workplace design. In Designing

Socially Embedded Technologies in the Real-World. (Vol. pp. 19-33),

Springer.

17. Biehl, J.T., Bailey, B.P. (2004). ARIS: an interface for application reloca-

tion in an interactive space. In: Proc. of Graphics Interface (GI '04). Lon-

don, Ontario (Canada). 17 - 19 May. pp. 107-116. Canadian Human-

Computer Communications Society, London, Ontario, Canada.

18. Bizer, C., Heath, T., Berners-Lee, T. (2009). Linked data-the story so far.

In Semantic Services, Interoperability and Web Applications: Emerging

Concepts 205-227

19. Braun, V., Clarke, V. (2006). Using Thematic Analysis in Psychology

Qualitative Research in Psychology, 3, 77-101. In Bristol: University of

the West of England

20. Brooke, J. (1996). SUS: A quick and dirty usability scale. In Jordan, P.W.,

Weerdmeester, B., Thomas, A., McLelland, I.L. Usability evaluation in

industry. (Vol. pp. 189-194), Taylor and Francis.

21. Brooke, J. (2013). SUS: a retrospective. In Journal of Usability Studies

8(2), 29-40

22. Cabitza, F., Fogli, D., Piccinno, A. (2014). “Each to His Own”: Distin-

guishing Activities, Roles and Artifacts in EUD Practices. In Caporarello,

L., Di Martino, B., Martinez, M. Smart Organizations and Smart Artifacts.

(Vol. 7, pp. 193-205), Springer International Publishing.

23. Cappiello, C., Daniel, F., Matera, M. (2009). A Quality Model for Mashup

Components. In Gaedke, M., Grossniklaus, M., Díaz, O. Web Engineering

- ICWE 2009. (Vol. 5648, pp. 236-250), Springer Berlin Heidelberg.

24. Cappiello, C., Matera, M., Picozzi, M. (2015). A UI-Centric Approach for

the End-User Development of Multidevice Mashups. In ACM Transaction

Web 9(3), 1-40

25. Cappiello, C., Matera, M., Picozzi, M., Sprega, G., Barbagallo, D., Franca-

lanci, C. (2011). DashMash: A Mashup Environment for End User Devel-

opment. In Auer, S., Díaz, O., Papadopoulos, G. Web Engineering - ICWE

2011. (Vol. 6757, pp. 152-166), Springer Berlin Heidelberg.

26. Casati, F. (2011). How End-User Development Will Save Composition

Technologies from Their Continuing Failures. In Costabile, M.F., Dittrich,

Y., Fischer, G., Piccinno, A. End-User Development - Is-EUD 2011. (Vol.

6654, pp. 4-6), Springer Berlin Heidelberg.

27. Chen, N., Guimbretière, F., Sellen, A. (2013). Graduate student use of a

multi-slate reading system. In: Proc. of SIGCHI Conference on Human

References

138

Factors in Computing Systems (CHI '13). Paris (France). 27 April - 2 May.

pp. 1799-1808. ACM, New York, NY, US.

28. Costabile, M.F., Fogli, D., Mussio, P., Piccinno, A. (2006). End-User De-

velopment: The Software Shaping Workshop Approach. In Lieberman, H.,

Paternò, F., Wulf, V. End User Development - Is-EUD 2006. (Vol. 9, pp.

183-205), Springer Netherlands.

29. Costabile, M.F., Fogli, D., Mussio, P., Piccinno, A. (2007). Visual Interac-

tive Systems for End-User Development: A Model-Based Design Method-

ology. In IEEE Transactions on Systems, Man and Cybernetics, Part A:

Systems and Humans 37(6), 1029-1046

30. Costabile, M.F., Mussio, P., Provenza, L.P., Piccinno, A. (2009). Support-

ing End Users to Be Co-designers of Their Tools. In: Proc. of Internation-

al Symposium on End-User Development (IS-EUD '09). Siegen (Germa-

ny). 2 - 4 April. pp. 70-85. Springer-Verlag, 1530509.

31. Dachselt, R., Buchholz, R. (2009). Natural throw and tilt interaction be-

tween mobile phones and distant displays. In: Proc. of CHI '09 Extended

Abstracts on Human Factors in Computing Systems (CHI '09 EA). Boston,

MA (USA). 4 - 9 April. pp. 3253-3258. ACM, New York, NY, US.

32. Daniel, F. (2015). Live, Personal Data Integration Through UI-Oriented

Computing. In Cimiano, P., Frasincar, F., Houben, G.-J., Schwabe, D. En-

gineering the Web in the Big Data Era - ICWE 2015. (Vol. 9114, pp. 479-

497), Springer International Publishing.

33. Daniel, F., Casati, F., Benatallah, B., Shan, M.-C. (2009). Hosted Univer-

sal Composition: Models, Languages and Infrastructure in mashArt. In

Laender, A.F., Castano, S., Dayal, U., Casati, F., Oliveira, J. Conceptual

Modeling - ER 2009. (Vol. 5829, pp. 428-443), Springer Berlin Heidel-

berg.

34. Daniel, F., Matera, M.: Mashups: Concepts, Models and Architectures.

Springer (2014)

35. Desolda, G. (2015). Enhancing Workspace Composition by Exploiting

Linked Open Data as a Polymorphic Data Source. In Damiani, E., How-

lett, R.J., Jain, L.C., Gallo, L., De Pietro, G. Intelligent Interactive Multi-

media Systems and Services - KES-IIMSS 2015. (Vol. 40, pp. 97-108),

Berlin Heidelberg, Springer International Publishing.

36. Desolda, G., Ardito, C., Matera, M. (2015). EFESTO: A platform for the

End-User Development of Interactive Workspaces for Data Exploration.

In Daniel, F., Pautasso, C. Rapid Mashup Development Tools - Rapid

Mashup Challenge in ICWE 2015. (Vol. 591, pp. 63 - 81), Berlin Heidel-

berg, Springer Verlag.

37. Díez, D., Mørch, A., Piccinno, A., Valtolina, S. (2013). Cultures of Partic-

ipation in the Digital Age: Empowering End Users to Improve Their Qual-

ity of Life. In Dittrich, Y., Burnett, M., Mørch, A., Redmiles, D. End-User

Development - Is-EUD 2013. (Vol. 7897, pp. 304-309), Springer Berlin

Heidelberg.

38. DIS, I.: 9241-210: 2010. Ergonomics of human system interaction-Part

210: Human-centred design for interactive systems. International Stand-

ardization Organization (ISO). Switzerland (2009)

39. Ennals, R., Brewer, E., Garofalakis, M., Shadle, M., Gandhi, P. (2007). In-

tel Mash Maker: join the web. In SIGMOD Rec. 36(4), 27-33

References

139

40. Fischer, G. (2011). Understanding, fostering, and supporting cultures of

participation. In interactions 18(3), 42-53

41. Fischer, G., Giaccardi, E., Ye, Y., Sutcliffe, A.G., Mehandjiev, N. (2004).

Meta-design: a manifesto for end-user development. In Commun. ACM

47(9), 33-37

42. Fogli, D., Piccinno, A. (2013). Co-evolution of End-User Developers and

Systems in Multi-tiered Proxy Design Problems. In Dittrich, Y., Burnett,

M., Mørch, A., Redmiles, D. End-User Development - Is-EUD 2013. (Vol.

7897, pp. 153-168), Springer Berlin Heidelberg.

43. Ghiani, G., Manca, M., Paternò, F. (2015). Authoring context-dependent

cross-device user interfaces based on trigger/action rules. In: Proc. of 4th

International Conference on Mobile and Ubiquitous Multimedia (MUM

'15). Linz, Austria. pp. 313-322. ACM, New York, NY, USA.

44. Hamilton, P., Wigdor, D.J. (2014). Conductor: enabling and understanding

cross-device interaction. In: Proc. of SIGCHI Conference on Human Fac-

tors in Computing Systems (CHI '14). Toronto, Ontario (Canada). 18 - 23

April. pp. 2773-2782. ACM, New York, NY, USA.

45. Hinckley, K. (2003). Synchronous gestures for multiple persons and com-

puters. In: Proc. of ACM symposium on User interface software and tech-

nology (UIST '03). Vancouver (Canada). 02 - 05 November. pp. 149-158.

ACM, New York, NY, USA.

46. Hooi, Y., Hassan, M.F., Shariff, A. (2014). A Survey on Ontology Map-

ping Techniques. In Jeong, H.Y., S. Obaidat, M., Yen, N.Y., Park, J.J. Ad-

vances in Computer Science and its Applications. (Vol. 279, pp. 829-836),

Springer Berlin Heidelberg.

47. HousingMaps: http://www.housingmaps.com/. Last access on Nov. 26th,

2015

48. IFTTT: https://ifttt.com/. Last access on Dec 3th, 2015

49. Jain, P., Hitzler, P., Sheth, A.P., Verma, K., Yeh, P.Z. (2010). Ontology

alignment for linked open data. In The Semantic Web – ISWC 2010. (Vol.

pp. 402-417), Springer.

50. Jenkins, H.: Confronting the challenges of participatory culture: Media

education for the 21st century. Mit Press (2009)

51. Jhingran, A. (2006). Enterprise information mashups: integrating infor-

mation, simply. In: Proc. of International Conference on Very Large Data

Bases (VLDB '06). 12 - 15 September. pp. 3-4. VLDB Endowment,

52. Jung, J. (2012). ContextGrid: A contextual mashup-based collaborative

browsing system. In Information Systems Frontiers 14(4), 953-961

53. Kemp, J., Van Gelderen, T. (1996). Co-discovery exploration: an informal

method for the iterative design of consumer products. In Usability evalua-

tion in industry 139-146

54. Krug, M., Wiedemann, F., Gaedke, M. (2014). SmartComposition: A

Component-Based Approach for Creating Multi-screen Mashups. In

Casteleyn, S., Rossi, G., Winckler, M. Web Engineering - ICWE 2014.

(Vol. 8541, pp. 236-253), Springer International Publishing.

55. Krummenacher, R., Norton, B., Simperl, E., Pedrinaci, C. (2009).

SOA4All: Enabling Web-scale Service Economies. In: Proc. of Interna-

tional Conference on Semantic Computing (ICSC '09). Berkeley, CA

(USA). 14-16 September. pp. 535-542. IEEE Computer Society, 1679938.

http://www.housingmaps.com/

References

140

56. Lewis, J., Sauro, J. (2009). The Factor Structure of the System Usability

Scale. In Kurosu, M. Human Centered Design - HCD 2009. (Vol. LNCS

5619, pp. 94-103), Springer Berlin Heidelberg.

57. Loton, T.: Introduction to Microsoft Popfly, No Programming Required.

Lotontech Limited (2008)

58. Lucero, A., Holopainen, J., Jokela, T. (2011). Pass-them-around: collabo-

rative use of mobile phones for photo sharing. In: Proc. of SIGCHI Con-

ference on Human Factors in Computing Systems (CHI '11). Vancouver,

BC (Canada). 7 - 12 May. pp. 1787-1796. ACM, New York, NY, USA.

59. Lucero, A., Keränen, J., Korhonen, H. (2010). Collaborative use of mobile

phones for brainstorming. In: Proc. of International Conference on Human

Computer Interaction with Mobile Devices and Services (MobileHCI '10).

Lisbon, Portugal. 7 - 10 September. pp. 337-340. ACM, New York, NY,

USA.

60. Marquardt, N., Hinckley, K., Greenberg, S. (2012). Cross-device interac-

tion via micro-mobility and f-formations. In: Proc. of ACM symposium on

User Interface Software and Technology (UIST '12). Cambridge, Massa-

chusetts (USA). 7-10 October. pp. 13-22. ACM, New York, NY, USA.

61. Matera, M., Picozzi, M., Pini, M., Tonazzo, M. (2013). PEUDOM: A

mashup platform for the end user development of common information

spaces. In Web Engineering - ICWE 2013. (Vol. pp. 494-497), Springer.

62. Maximilien, E.M., Wilkinson, H., Desai, N., Tai, S.: A domain-specific

language for web apis and services mashups. Springer (2007)

63. Meteor: Meteor, https://www.meteor.com/. Last access on Sept. 25th,

2015

64. Morris, M.R., Danielescu, A., Drucker, S., Fisher, D., Lee, B., schraefel,

m.c., Wobbrock, J.O. (2014). Reducing legacy bias in gesture elicitation

studies. In interactions 21(3), 40-45

65. Namoun, A., Nestler, T., De Angeli, A. (2010). Conceptual and Usability

Issues in the Composable Web of Software Services. In Daniel, F., Facca,

F. Current Trends in Web Engineering - ICWE 2010 (Vol. 6385, pp. 396-

407), Springer Berlin Heidelberg.

66. Namoun, A., Wajid, U., Mehandjiev, N. (2010). Service Composition for

Everyone: A Study of Risks and Benefits. In Dan, A., Gittler, F., Toumani,

F. Service-Oriented Computing - ICSOC/ServiceWave 2009 Workshops.

(Vol. 6275, pp. 550-559), Springer Berlin Heidelberg.

67. Nardi, B.A.: A small matter of programming: perspectives on end user

computing. MIT Press (1993)

68. Netvibes: https://www.netvibes.com/. Last access on Nov 26th, 2015

69. Paredes‐Valverde, M.A., Alor‐Hernández, G., Rodríguez‐González, A.,

Valencia‐García, R., Jiménez‐Domingo, E. (2015). A systematic review of

tools, languages, and methodologies for mashup development. In Soft-

ware: Practice and Experience 45(3), 365-397

70. Pavel, S., Euzenat, J. (2013). Ontology Matching: State of the Art and Fu-

ture Challenges. In IEEE Trans. on Knowl. and Data Eng. 25(1), 158-176

71. Porter, J.: Designing for the social web. Peachpit Press (2010)

72. Preece, J., Sharp, H., Rogers, Y.: Interaction Design-beyond human-

computer interaction. John Wiley & Sons (2015)

http://www.meteor.com/
http://www.netvibes.com/

References

141

73. Presto, J.: http://mdc.jackbe.com/prestodocs/v3.7/raql/cacheStore.html.

Last access on Nov 26th, 2015

74. Pruett, M.: Yahoo! pipes. O'Reilly (2007)

75. Rädle, R., Jetter, H.-C., Marquardt, N., Reiterer, H., Rogers, Y. (2014).

HuddleLamp: Spatially-Aware Mobile Displays for Ad-hoc Around-the-

Table Collaboration. In: Proc. of ACM International Conference on Inter-

active Tabletops and Surfaces (ITS '14). Dresden (Germany). 16-19 No-

vember. pp. 45-54. ACM, New York, NY, USA.

76. Rädle, R., Jetter, H.-C., Schreiner, M., Lu, Z., Reiterer, H., Rogers, Y.

(2015). Spatially-aware or Spatially-agnostic?: Elicitation and Evaluation

of User-Defined Cross-Device Interactions. In: Proc. of ACM Conference

on Human Factors in Computing Systems (CHI '15). Seoul (Republic of

Korea). April 18 - 23. pp. 3913-3922. ACM, New York, NY, USA.

77. Reetz, A., Gutwin, C., Stach, T., Nacenta, M., Subramanian, S. (2006).

Superflick: a natural and efficient technique for long-distance object

placement on digital tables. In: Proc. of Graphics Interface 2006 (GI '06).

Quebec (Canada). June 7 - 9. pp. 163-170. Canadian Information Pro-

cessing Society, Toronto, Ont., Canada, Canada.

78. Reeve, L., Han, H. (2005). Survey of semantic annotation platforms. In:

Proc. of ACM symposium on Applied Computing (SAC '05). Santa Fe

(New Mexico). 13 -17 March. pp. 1634-1638. ACM, 1067049.

79. Spillner, J., Feldmann, M., Braun, I., Springer, T., Schill, A. (2008). Ad-

Hoc Usage of Web Services with Dynvoker. In Mähönen, P., Pohl, K.,

Priol, T. Towards a Service-Based Internet - ServiceWave 2008. (Vol.

5377, pp. 208-219), Springer Berlin Heidelberg.

80. Tanimoto, S.L. (1990). VIVA: A visual language for image processing. In

Journal of Visual Languages & Computing 1(2), 127-139

81. Technology, I.E.: http://nodered.org/. Last access on Nov 26th, 2015

82. Voida, S., Podlaseck, M., Kjeldsen, R., Pinhanez, C. (2005). A study on

the manipulation of 2D objects in a projector/camera-based augmented re-

ality environment. In: Proc. of SIGCHI Conference on Human Factors in

Computing Systems (CHI '05). Portland, Oregon (USA). 02 - 07 April. pp.

611-620. ACM, New York, NY, USA.

83. Wacharamanotham, C., Subramanian, K., Völkel, S.T., Borchers, J.

(2015). Statsplorer: Guiding Novices in Statistical Analysis. In: Proc. of

ACM Conference on Human Factors in Computing Systems (CHI '15).

Seoul (Republic of Korea). 18 - 23 April. pp. 2693-2702. ACM, New

York, NY, USA.

84. Wajid, U., Namoun, A., Mehandjiev, N. (2011). Alternative Representa-

tions for End User Composition of Service-Based Systems. In Costabile,

M.F., Dittrich, Y., Fischer, G., Piccinno, A. End-User Development - Is-

EUD 2011. (Vol. 6654, pp. 53-66), Springer Berlin Heidelberg.

85. Weiser, M. (1991). The computer for the 21st century. In Scientific ameri-

can 265(3), 94-104

86. White, R.W., Roth, R.A. (2009). Exploratory search: Beyond the query-

response paradigm. In Synthesis Lectures on Information Concepts, Re-

trieval, and Services 1(1), 1-98

87. Wong, J., Hong, J.I. (2007). Making mashups with marmite: towards end-

user programming for the web. In: Proc. of SIGCHI Conference on Hu-

http://mdc.jackbe.com/prestodocs/v3.7/raql/cacheStore.html
http://nodered.org/

References

142

man Factors in Computing Systems (CHI '07). San Jose, California (USA).

28 April - 3 May. pp. 1435-1444. ACM, 1240842.

88. Wright, S., Bakmand-Mikalski, D., bin Rais, R., Bishop, D., Eddinger, M.,

Farnhill, B., Hild, E., Krause, J., Loriot, C., Malik, S. (2011). Designing

Mashups with Excel and Visio. In Expert SharePoint 2010 Practices.

(Vol. pp. 513-539), Springer.

89. Yang, J., Wigdor, D. (2014). Panelrama: enabling easy specification of

cross-device web applications. In: Proc. of SIGCHI Conference on Human

Factors in Computing Systems (CHI '14). Toronto, Ontario (Canada). 26

April - 1 May. pp. 2783-2792. ACM, New York, NY, USA.

90. Yu, J., Benatallah, B., Saint-Paul, R., Casati, F., Daniel, F., Matera, M.

(2007). A framework for rapid integration of presentation components. In:

Proc. of International Conference on World Wide Web (WWW '07). Banff,

Alberta (Canada). May 8-12. pp. 923-932. ACM,

91. Zang, N., Rosson, M.B. (2008). What's in a mashup? And why? Studying

the perceptions of web-active end users. In: Proc. of IEEE Symposium on

Visual Languages and Human-Centric Computing (VL-HCC '08).

Herrsching, Ammersee (Germany). September 15 - 19. pp. 31-38. IEEE

Computer Society, 1550043.

143

G i u s e p p e D e s o l d a ’ s p u b l i c a t i o n s d u r i n g 2 0 1 3 - 2 0 1 5

Papers in International Journals

 Ardito C., Buono P., Costabile M. F., and Desolda G. (2015). Interaction

with large displays: a survey. ACM Computing Survey 47, 3, 1-38.

 Lanzilotti, R., Ardito, C., Costabile, M.F., De Angeli, A., Desolda, G.

(2015). Pupils’ Collaboration around a Large Display. In Journal of Visual

Languages & Computing 31, B, 206-214.

 Ardito C., Bottoni P., Costabile M. F., Desolda G., Matera M., and Picozzi

M. (2014). Creation and Use of Service-based Distributed Interactive Work-

spaces. Journal of Visual Languages & Computing 25, 6, 717-26.

 Ardito C., Costabile M. F., Desolda G., Lanzilotti R., Matera M., Piccinno

A., and Picozzi M. (2014). User-Driven Visual Composition of Service-

Based Interactive Spaces. Journal of Visual Languages & Computing 25, 4,

278-96.

 Ardito C., Lanzilotti R., Costabile M. F., and Desolda G. (2013). Integrat-

ing traditional learning and games on large displays: an experimental study.

Educational Technology & Society 16, 1, 44-56.

Chapters in International Collections

 Desolda, G., Ardito, C., Matera, M. (2015). EFESTO: A platform for the

End-User Development of Interactive Workspaces for Data Exploration. In

Daniel, F., Pautasso, C. Rapid Mashup Development Tools - Rapid Mashup

Challenge in ICWE 2015. (Vol. 591, pp. 63 - 81), Berlin Heidelberg,

Springer Verlag.

 Desolda, G. (2015). Enhancing Workspace Composition by Exploiting

Linked Open Data as a Polymorphic Data Source. In Damiani, E., Howlett,

R.J., Jain, L.C., Gallo, L., De Pietro, G. Intelligent Interactive Multimedia

Systems and Services - KES-IIMSS 2015. (Vol. 40, pp. 97-108), Berlin Hei-

delberg, Springer International Publishing.

 Desolda, G., Jetter, H.-C. (2015). Spatial Awareness in Mobile Devices to

Compose Data Source: A Utilization Study. In Díaz, P., Pipek, V., Ardito,

C., Jensen, C., Aedo, I., Boden, A. End-User Development - Is-EUD 2015.

(Vol. LNCS 9083, pp. 291-294), Berlin Heidelberg, Springer International

Publishing.

 Ardito, C., Costabile, M.F., Desolda, G., Latzina, M., Matera, M. (2015).

Hands-on Actionable Mashups. In Díaz, P., Pipek, V., Ardito, C., Jensen,

C., Aedo, I., Boden, A. End-User Development - Is-EUD 2015. (Vol. LCNS

9083, pp. 295-298), Berlin Heidelberg, Springer Verlag.

 Ardito, C., Costabile, M.F., Desolda, G., Latzina, M., Matera, M. (2015).

Making Mashups Actionable Through Elastic Design Principles. In Díaz, P.,

144

Pipek, V., Ardito, C., Jensen, C., Aedo, I., Boden, A. End-User Develop-

ment - Is-EUD 2015. (Vol. LCNS 9083, pp. 236-241), Berlin Heidelberg,

Springer Verlag.

 Desolda, G. (2014). Using semantic techniques to improve service compo-

sition by end users. In Casteleyn, S., Rossi, G., Winckler, M. Web Engineer-

ing - ICWE 2014. (Vol. LCNS 8541, pp. 567-570), Berlin Heidelberg,

Springer International Publishing.

 Ardito, C., Bottoni, P., Costabile, M.F., Desolda, G., Matera, M., Piccinno,

A., Picozzi, M. (2013). Enabling End Users to Create, Annotate and Share

Personal Information Spaces. In Dittrich, Y., Burnett, M., Mørch, A., Red-

miles, D. End-User Development - Is-EUD 2013. (Vol. LCNS 7897, pp. 40-

55), Berlin Heidelberg, Springer Verlag.

Proceedings of International Conferences

 Ardito, C., Desolda, G., Matera, M. (2015). Fostering Innovation through

End-User Development: a Mashup-based Approach. In: Proc. of Interna-

tional Forum on Knowledge Asset Dynamics (IFKAD '15). Bari (Itay). 10-

12 June 2015. pp. 1454 - 1464.

 Desolda, G., Ardito, C., Matera, M., Piccinno, A. (2015). Mashing-up smart

things: a meta-design approach. In: Proc. of Workshop on End User Devel-

opment in the Internet of Things Era (EUDITE '15) - CHI '15 EA. Seoul

(Korea). April 19, 2015. pp. 33 - 36. ACM, New York, NY, USA.

 Ardito, C., Costabile, M.F., Desolda, G., Lanzilotti, R., Matera, M., Picozzi,

M. (2014). Visual Composition of Data Sources by End-Users. In: Proc. of

International Working Conference on Advanced Visual Interfaces (AVI '14).

Como (Italy). 28-30 May pp. 257-260. ACM, New York, NY, USA.

 Desolda, G. (2014). A platform for enabling end users to compose data and

services. In: Proc. of Demo Session of the International Working Confer-

ence on Advanced Visual Interfaces (AVI '14). Como, Italy. 28-30 May,

2014. pp. 1-4. ACM,

 Buono, P., Desolda, G. (2014). Visualizing collaborative traces in distribut-

ed teams. In: Proc. of International Working Conference on Advanced Visu-

al Interfaces (AVI '14). Como, Italy. May 28-30, 2014. pp. 343-344. ACM,

New York, USA.

 Ardito, C., Costabile, M.F., Desolda, G., Lanzilotti, R., Matera, M., Piccin-

no, A., Picozzi, M. (2013). Personal information spaces in the context of

visits to archaeological parks. In: Proc. of Biannual Conference of the Ital-

ian Chapter of SIGCHI (CHItaly '13). Trento, Italy. September 17-19, 2013.

pp. 1-4. ACM, New York, NY, USA.

 Desolda, G. (2013). Empowering End Users to Create Interactive Work-

spaces by Service Composition. In: Proc. of Doctoral Consortium of the Bi-

annual Conference of the Italian Chapter of SIGCHI (CHItaly '13). Trento,

Italy. September 16, 2013. pp. 1-4.

145

 Ardito, C., Desolda, G., Lanzillotti, R. (2013). Playing on large displays to

foster children's interest in archaeology. In: Proc. of International Confer-

ence on Distributed Multimedia Systems (DMS '13). Brighton (UK). August

8-10, 2013. pp. 79-84. Knowledge Systems Institute, Skokie, Illinois, USA.

 Buono, P., Desolda, G., Lanzillotti, R. (2013). Scene extraction from tele-

mentored surgery videos. In: Proc. of International Conference on Distrib-

uted Multimedia Systems (DMS '13). Brighton (UK). August 8-10, 2013. pp.

Knowledge Systems Institute, Skokie, Illinois, USA.

 Ardito, C., Costabile, M.F., Desolda, G., Lanzilotti, R., Matera, M. (2013).

Combining Composition Technologies and EUD to Enhance Visitors' Expe-

rience at Cultural Heritage Sites. In: Proc. of Conference on User Modeling,

Adaptation and Personalization (UMAP '13). Rome (Italy), June 10-14,

2013. pp. 1-9.

Proceedings of National Conferences

 Buono, P., Desolda, G., Lanzilotti, R. (2013). A telementoring system for

supporting laparoscopic surgeries (poster session). In: Proc. of Annual Con-

ference of the Associazione Italiana per il Calcolo Automatico (AICA '13).

Fisciano (SA), Italy. September 18-20, 2013.

