
Chapter 1

End-User Development: An Emerging Paradigm

HENRY LIEBERMAN1, FABIO PATERNÓ2, MARKUS KLANN3

and VOLKER WULF4

1MIT, 20 Armes Street 305, Cambridge, Massachussets, 02139 USA, lieber@media.mit.edu
2ISTI—CNR, Via G. Moruzzi 1, 56124 Pisa, Italy, fabio.paterno@isti.cnr.it
3Fraunhofer FIT, Schloß Birlinghoven, 53754 Sankt Augustin, Germany,
markus.klann@fit.fraunhofer.de
4University of Siegen, Hölderlinstr. 3, 57068 Siegen and Fraunhofer FIT, Schloß
Birlinghoven, 53754 Sankt Augustin, Germany, volker.wulf@uni-siegen.de

Abstract. We think that over the next few years, the goal of interactive systems and services will
evolve from just making systems easy to use (even though that goal has not yet been completely
achieved) to making systems that are easy to develop by end users. By now, most people have become
familiar with the basic functionality and interfaces of computers, but they are not able to manage
any programming language. Therefore, they cannot develop new applications or modify current ones
according to their needs.

In order to address such challenges it is necessary a new paradigm, based on a multidisciplinary
approach involving several types of expertise, such as software engineering, human-computer inter-
action, CSCW, which are now rather fragmented and with little interaction. The resulting methods and
tools can provide results useful across many application domains, such as ERP, multi-device services
(accessible through both mobile and stationary devices), and professional applications.

Key words. tailorability, end user programming, flexibility, usability

We think that over the next few years, the goal of human–computer interaction (HCI)
will evolve from just making systems easy to use (even though that goal has not yet
been completely achieved) to making systems that are easy to develop. By now, most
people have become familiar with the basic functionality and interfaces of computers.
However, developing new or modified applications that effectively support users’ goals
still requires considerable expertise in programming that cannot be expected from
most people. Thus, one fundamental challenge for the coming years is to develop
environments that allow users who do not have background in programming to develop
or modify their own applications, with the ultimate aim of empowering people to flexibly
employ advanced information and communication technologies.

Current trends in professional life, education, and also in leisure time are char-
acterized by increasing change and diversity: changing work and business practices,
individual qualifications and preferences, or changes in the dynamic environments in
which organizations and individuals act. The diversity concerns people with different
skills, knowledge, cultural background, and cognitive or physiological abilities, as well

Henry Lieberman et al. (eds.), End User Development, 1–8.
C© 2006 Springer.



2 HENRY LIEBERMAN ET AL.

as diversity related to different tasks, contexts, and areas of work. Enhancing user par-
ticipation in the initial design of systems is part of the solution. However, given that user
requirements are diversified, changing, and at times hard to identify precisely, going
through conventional development cycles with software professionals to keep up with
evolving contexts would be too slow, time consuming, and expensive. Thus, flexibility
really means that the users themselves should be able to continuously adapt the systems
to their needs. End-users are generally neither skilled nor interested in adapting their
systems at the same level as software professionals. However, it is very desirable to
empower users to adapt systems at a level of complexity that is appropriate to their
individual skills and situations. This is the main goal of EUD: empowering end-users
to develop and adapt systems themselves. Some existing research partially addresses
this issue, advocating casting users as the initiators of a fast, inexpensive, and tight co-
evolution with the systems they are using (Arondi et al., 2002; Mørch, 2002; Wulf, 1999;
see also the “Agile Programming” techniques of Beck, 1999 and Cockburn, 2002).

This insight, which developed in various fields of software engineering (SE) and HCI,
has now become focused in the new research topic of end-user development (EUD). To
enable systems for EUD, they must be made considerably more flexible and they must
support the demanding task of EUD: they must be easy to understand, to learn, to use,
and to teach. Also, users should find it easy to test and assess their EUD activities.

Though there are diverse views on what constitutes EUD, we attempt below to give
a working definition of it:

EUD can be defined as a set of methods, techniques, and tools that allow users
of software systems, who are acting as non-professional software developers, at some
point to create, modify, or extend a software artifact.

Today, some forms of EUD have found widespread use in commercial software
with some success: recording macros in word processors, setting up spreadsheets for
calculations, and defining e-mail filters. While these applications only realize a fraction
of EUD’s potential and still suffer from many flaws, they illustrate why empowering
end-users to develop the systems they are using is an important contribution to letting
them become active citizens of the Information Society.

Boehm et al. (2000) predicted exponential growth of the number of end-user devel-
opers compared to the number of software professionals, underscoring the importance
of research in EUD. The potential to provide EUD services over the Internet may create
a shift from the conventional few-to-many distribution model of software to a many-
to-many distribution model. EUD could lead to a considerable competitive advantage
in adapting to dynamically changing (economic) environments by empowering end-
users—in particular domain experts (Costabile et al., 2003)—to perform EUD. The
increasing amount of software embedded within consumer and professional products
also points to a need to promote EUD to enable effective use of these products.

On the political level EUD is important for full participation of citizens in the
emerging Information Society. The Information Society is characterized by computer
networks, which will becoming the leading media, integrating other traditional media
within digital networks and enabling access through a variety of interaction devices
ranging from small mobile phones to large flat screens. However, the creation of content



END-USER DEVELOPMENT 3

and the modification of the functionality of this network infrastructure are difficult for
non-professional programmers, resulting for many sectors of society in a division of
labor between those who produce and those who consume. EUD has the potential to
counterbalance these effects.

The emerging research field of EUD integrates different threads of discussion from
HCI, SE, computer supported cooperative work (CSCW), and artificial intelligence
(AI). Concepts such as tailorability, configurability, end-user programming, usability,
visual programming, natural programming, and programming by example already form
a fruitful base, but they need to be better integrated, and the synergy between them more
fully exploited.

We can identify two types of end-user activities from a user-centered design per-
spective:

1. Parameterization or customization. Activities that allow users to choose among
alternative behaviors (or presentations or interaction mechanisms) already available
in the application. Adaptive systems are those where the customization happens
automatically by the system in reaction to observation the user’s behavior.

2. Program creation and modification. Activities that imply some modification, aim-
ing at creating from scratch or modifying an existing software artifact. Examples
of these approaches are: programming by example (also called programming by
demonstration), visual programming, macros, and scripting languages.

EUD more properly involves the second set of activities since with the first set the
modification of software is restricted to strictly predefined options or formats. However,
we often want to design for a “gentle slope” of increasing complexity to allow users
to easily move up from the first to the second set of activities. Examples of activities
belonging to the first type are:

Parameterization. In this commonly occurring case, the user wishes to guide a com-
puter program by indicating how to handle several parts of the data in a different
way; the difference may simply lie in associating specific computation parameters
to specific parts of the data, or in applying different program functionalities to the
data.

Annotation. The users write comments next to data and results in order to remember
what they did, how they obtained their results, and how they could reproduce them.

Examples of activities belonging to the second type are:

Programming by example. Users provide example interactions and the system infers
a routine from them (Lieberman, 2001).

Incremental programming. This is close to traditional programming, but limited to
changing a small part of a program, such as a method in a class. It is easier than
programming from scratch.

Model-based development. The user just provides a conceptual description of the
intended activity to be supported and the system generates the corresponding
interactive application (Paternò, 2001).



4 HENRY LIEBERMAN ET AL.

Extended annotation or parameterization. A new functionality is associated with the
annotated data or in a cooperative environment users identify a new functionality
by selecting from a set of modifications other people have carried out and stored
in shared repositories.

To start looking at EUD research, let us distinguish between research on end-user
participation during the initial design phase and research on end-user modification
during usage. As EUD implies that design can extend beyond an initial, dedicated
design phase, this is not really a sharp distinction.

Providing support during a dedicated design phase aims at better capturing and sat-
isfying user requirements. Research in this area seeks to develop domain-specific, pos-
sibly graphical modeling languages that enable users to easily express the desired func-
tionality (cf. Mehandjiev and Bottaci, 1996; Paternò et al., 1994; Repenning et al., 2000).
Such modeling languages are considered an important means of bridging the “com-
munication gap” between the technical view of software professionals and the domain
expert view of end-users (Majhew, 1992; Paternò, 2001). In particular, work is being
done on using the extension mechanisms of the unified modeling language (UML), a set
of graphical representations for modeling all aspects of software systems, to create a rep-
resentational format for end-users. Another complementary approach to bringing these
two views closer together is the use of scenarios in development as a communicative aid.

As noted above, an initial design tends to become outdated or insufficient fairly
quickly because of changing requirements. Challenging the conventional view of
“design-before-use,” new approaches try to establish “design-during-use” (Dittrich
et al., 2002; Mehandjiev and Bottaci, 1996), leading to a process that can be termed
“evolutionary application development.” System changes during use might be brought
about by either explicit end-user requests or automatically initiated state transitions of
the system. In the first case, the system is called adaptable, whereas in the second,
adaptive (Oppermann and Simm, 1994).

Such a scenario raises the need for system flexibility that allows for modifications
that go well beyond simple parameterizations, while being substantially easier than
(re)programming. More precisely, a system should offer a range of different modifica-
tion levels with increasing complexity and power of expression. This is to ensure that
users can make small changes simply, while more complicated ones will only involve a
proportional increase in complexity. This property of avoiding big jumps in complexity
to attain a reasonable trade-off is what is called the “gentle slope” (Dertouzos, 1997;
MacLean et al., 1990; Wulf and Golombek, 2001). As an example, a system might
offer three levels of complexity: First, the user can set parameters and make selections.
Second, the user might compose existing components. Third, the user can extend the
system by programming new components (Henderson and Kyng, 1991; Mørch, 1997;
Stiemerling, 2000). Modular approaches can generally provide a gentle slope for a
range of complexity by allowing successive decomposition and reconfiguration of soft-
ware entities that are themselves build up from smaller components (e.g., Won et al., in
this volume). The precondition for this is that a system’s component structure has been



END-USER DEVELOPMENT 5

designed to be meaningful for its users, and that these users are able to easily translate
changes in the application domain into corresponding changes in the component
structure.

While adaptivity alone does not constitute EUD because the initiative of modifica-
tions is with the system, it is interesting to combine it with end-user driven activities.
Users may want to stay in control of how systems adapt themselves and might have to
supply additional information or take certain decisions to support system adaptivity.
Conversely, the system might try to preselect the pertinent EUD options for a given
context or choose an appropriate level of EUD for the current user and task at hand,
thus enhancing EUD through adaptivity. Mixed forms of interactions where adaptive
systems can support interaction but users can still take the initiative in the development
process may provide interesting results, as well.

How do we make functionality for adaptation available at the user interface? First,
adaptation should be unobtrusive, so as not to distract user attention from the primary
task. At the same time, the cognitive load of switching from using to adapting should
be as low as possible. There seems to be a consensus that adaptation should be made
available as an extension to the existing user interface. A related issue is how to make
users aware of existing EUD functions and how to make these functions easily accessible
(e.g., Wulf and Golombek, 2001).

Another key research area deals with cooperative EUD activities, having its roots in
research on CSCW. It investigates topics such as collaborative development by groups
of end-users (Letondal, 2001; Mørch and Mehandjiev, 2000), privacy issues, and repos-
itories for sharing artifacts among end-users (Kahler 2001; Wulf 1999). This research
also includes recommending and awareness mechanisms for finding suitable EUD ex-
pertise as well as reusable artifacts. We should foster the building of communities where
end-users can effectively share their EUD-related knowledge and artifacts with their
peers (Costabile et al., 2002; Pipek and Kahler, in this volume).

Flexible software architectures are a prerequisite for enabling adaptivity. Approaches
range from simple parameters, rules, and constraints to changeable descriptions of
system behavior (meta-data) and component-based architectures (Won et al., in this
volume). A key property of an EUD-friendly architecture is to allow for substantive
changes during run-time, without having to stop and restart or rebuild the system.

Enabling end-users to substantially alter systems creates a number of obvious is-
sues concerning correctness and consistency, security, and privacy. One approach to
handling these issues is to let the system monitor and maintain a set of desired system
properties during EUD activities. For example, properties like integrity and consistency
can be maintained by only allowing safe operations. Nonetheless, user errors and in-
completeness of information cannot be ruled out altogether (Lieberman, 2001). Users
may often be able to supply missing information or correct errors if properly notified.
For this reason, it may be best to adopt a mixed-initiative approach to dealing with
errors (Horvitz, 1999).

Finally, another approach to improving EUD is to create languages that are more
suited to non-programmers and to specifying requirements than are conventional



6 HENRY LIEBERMAN ET AL.

programming languages. In particular, domain-specific and graphical languages are
being investigated (e.g., Paternò et al., 1994).

At the center of EUD are the users and their requirements (Stiemerling et al., 1997).
The increasing change and diversity engendered by networked mobile and embedded
devices will enable access to interactive services anywhere and anytime in diverse con-
texts of use. Therefore, EUD environments should support easy generation of interfaces
able to adapt the device’s features (e.g., Berti et al., in this volume). Also, systems are
used by diverse groups of people, with varying levels of expertise, current tasks, and
other factors. Systems should be able to adapt to the changing contexts and requirements
under the user’s control and understanding.

EUD is a socio-cultural activity, depending on place, time, and people involved.
Differences in EUD practice are likely to develop for different cultures and languages.
Obviously, this is of particular importance for cross-cultural collaboration. Another area
where such differences are likely to show up is EUD of groupware systems, whether
this EUD is done cooperatively or not. These differences may relate to who is in control
of EUD activities, to the relation between individual and collaborative EUD, and to
how communities of end-user developers are organized.

Embedding systems into heterogeneous environments cannot be completely
achieved before use, by determining the requirements once and deriving an appro-
priate design. Rather, adaptation must continue as an iterative process by the hands
of the users, blurring the border between use and design. A given system design em-
bodies a certain semiotic model (Lehman, 1980) of the context of use, and that EUD
allows users to adapt this model to reflect their natural evolution. Furthermore, using
a system changes the users themselves, and as they change they will use the system
in new ways (Carroll and Rosson, 1992; Pipek and Wulf, 1999). Systems must be
designed so that they can accommodate user needs that cannot be anticipated in the re-
quirement phase, especially those that arise because of user evolution (Costabile et al.,
2003).

Being a relatively young field, EUD is yet rather diversified in terms of terminology,
approaches, and subject areas. Networking within the EUD-community has started
only relatively recently (Sutcliffe and Mehandjiev, 2004). One such effort was the EU-
funded Network of Excellence EUD-Net,1 bringing together leading EUD researchers
and industry players from Europe. Later on, the US National Science Foundation funded
end-user software engineering systems (EUSES), investigating whether it is possible
to bring the benefits of rigorous SE methodologies to end-users. It is generally felt that
there is a strong need for thorough empirical investigations of new EUD-approaches in
real-world projects, both to solidify the theoretical groundings of EUD, and to develop
more appropriate methods and tools for deploying and using EUD-systems. Further
research initiatives are on the way in the 7th Framework Program of the EU as well as
by single European states such as Germany.

The present book is an effort to make many important aspects of the international
EUD discussion available to a broader audience. A first set of papers resulted from

1 For more information on EUD-Net see http://giove.isti.cnr.it/eud-net.htm.



END-USER DEVELOPMENT 7

two EUD-Net events: a research workshop held in September 2002 at ISTI-CNR in
Pisa, Italy, and the International Symposium on EUD held in October 2003 in Schloss
Birlinghoven, Germany. Beyond these contributions, we invited some papers from other
leading researchers in the field. We hope that this broad look at the emerging paradigm
of EUD leads you to appreciate its diversity and potential for the future. And we look
forward to having you, the reader, the “end-user” of this book, contribute what you can
to the field, whether it is working on a system for EUD, or simply achieving a better
understanding of how EUD might fit into your work and your life.

References

Arondi, S., Baroni, P., Fogli, D. and Mussio, P. (2002). Supporting Co-evolution of Users and Systems
by the Recognition of Interaction Patterns. Trento, Italy: AVI.

Beck, B. (1999). Extreme Programming Explained: Embrace Change. Reading, MA: Addison-Wesley.
Berti, S., Paternó, F. and Santoro, C. Natural Development of Nomadic Interfaces Based on Conceptual

Descriptions, in this volume.
Boehm, B.W., Abts, C., Brown, A., Chulani, S., Clark, B., Horowitz, E., Modochy, R., Reifer, D. and

Steece, B. (2000). Software Cost Estimation with COCOMO II. Upper Saddle River, NJ: Prentice
Hall PTR.

Carroll, J.M. and Rosson M.B. (1992). Getting around the task-artifact cycle: How to make claims
and design by Scenario. ACM Transactions on Information Systems 10(2), 181–212.

Cockburn, A. (2002). Agile Software Development. Reading, MA: Addison Wesley.
Costabile, M.F., Fogli, D., Fresta, G., Mussio, P. and Piccinno, A. (2002). Computer Environments for

Improving End-User Accessibility. ERCIM Workshop “User Interfaces For All”, Paris.
Costabile, M.F., Fogli, D., Fresta, G., Mussio, P. and Piccinno, A. (2003). Building environments for

end-user development and tailoring. In: IEEE Symposia on Human Centric Computing Languages
and Environments, Aukland.

Dertouzos, M. (1997). What Will Be: How the New World of Information Will Change Our Lives. New
York: Harper-Collins.

Dittrich, Y., Eriksén, S. and Hansson, C. (2002). PD in the Wild: Evolving Practices of Design in Use.
Malmö, Sweden: PDC.

Henderson, A. and Kyng M. (1991). There’s No Place Like Home. Continuing Design in Use. Design
at Work, Hillsdale, NJ: Lawrence Erlbaum Assoc. pp. 219–240.

Horvitz, E. (1999). Principles of mixed-initiative user interfaces. In Proceedings ACM CHI 1999,
ACM Press, pp.159–166.

Kahler, H. (2001). Supporting Collaborative Tailoring. Ph.D.-Thesis. Roskilde University, Denmark,
Roskilde.

Lehman, M. (1980). Programs, life cycles, and laws of software evolution. IEEE 68.
Letondal, C. (2001). Programmation et interaction. Orsay: Université de Paris XI.
Lieberman, H. (2001). Your Wish is My Command: Programming by Example. San Francisco: Morgan

Kaufmann.
MacLean, A., Carter, K., Lövstrand, L. and Moran, T. (1990). User-tailorable systems: Pressing the

issue with buttons. In: Proceedings of the Conference on Computer Human Interaction (CHI ’90),
April 1–5, 1990. Seattle, Washington. New York: ACM-Press, pp. 175–182.

Majhew, D.J. (1992). Principles and Guideline in Software User Interface Design. New York: Prentice
Hall.

Mehandjiev, N. and Bottaci, L. (1996). User-enhanceability for organizational information systems
through visual programming. In: Advanced Information Systems Engineering: 8th International
Conference, CAiSE’96, Springer-Verlag.



8 HENRY LIEBERMAN ET AL.

Mørch, A.I. (1997). Three levels of end-user tailoring: Customization, integration, and extension. In:
M. Kyng and L. Mathiassen (eds.), Computers and Design in Context. Cambridge, MA: The MIT
Press, pp. 51–76.

Mørch, A.I. (2002). Evolutionary growth and control in user tailorable systems. In: N. Patel (ed.),
Adaptive Evolutionary Information Systems. Hershey, PA: Idea Group Publishing, pp. 30–58.

Mørch, A.I. and Mehandjiev, N.D. (2000). Tailoring as collaboration: The mediating role of multiple
representations and application units. Computer Supported Cooperative Work 9(1), 75–100.

Oppermann, R. and Simm, H. (1994). Adaptability: User-initiated individualization. In: R. Oppermann
(ed.), Adaptive User Support—Ergonomic Design of Manually and Automatically Adaptable
Software. Hillsdale, New Jersey: Lawrence Erlbaum Ass.

Paternò, F. (2001). Model-based Design and Evaluation of Interactive Applications. London, UK:
Springer Verlag.

Paternò, F., Campari, I. and Scopigno, R. (1994). The design and specification of a visual language:
An example for customising geographic information systems functionalities. Computer Graphics
Forum 13(4), 199–210.

Pipek, V. and Kahler, H. Supporting Collaborative Tailoring, in this volume.
Pipek, V. and Wulf, V. (1999). A groupware’s life. In: Proceedings of the Sixth European Conference

on Computer Supported Cooperative Work (ECSCW ’99), Dordrecht, Kluwer, pp. 199–219.
Repenning, A., Ioannidou, A. and Zola, J. (2000). AgentSheets: End-user programmable simulations.

Journal of Artificial Societies and Social Simulation 3(3).
Stiemerling, O. (2000). Component-Based Tailorability. Ph.D. Thesis. Department of Computer Sci-

ence, University of Bonn, Bonn.
Stiemerling, O., Kahler, H. and Wulf, V. (1997). How to make software softer—designing tailorable

applications. In: Proceedings of the ACM Symposium on Designing Interactive Systems (DIS 97),
18.–20.8.1997, Amsterdam (NL). New York: ACM-Press, pp. 365–376.

Sutcliffe, A. and Mehandjiev N. (2004). End User Development. Special Issue of the Communications
of the ACM 47(9), 31–66.

Won, M., Stiemerling, O. and Wulf, V. Component-based Approaches to Tailorable Systems, in this
volume.

Wulf, V. (1999). “Let’s see your Search-Tool!”—Collaborative use of tailored artifacts in groupware.
In: Proceedings of GROUP ’99, New York: ACM-Press, pp. 50–60.

Wulf, V. and Golombek, B. (2001). Direct activation: A concept to encourage tailoring activities.
Behaviour and Information Technology 20(4), 249–263.




