
Contents lists available at SciVerse ScienceDirect
Journal of Visual Languages and Computing

Journal of Visual Languages and Computing 23 (2012) 78–90
1045-92

doi:10.1

$ Ded

It refer

Univers

Univers

very ea

in visua

develop

not yet

attentio

importa

need fo

tools th

their wo

themse

collabor

scientifi

about o

lives.
$$ T
n Corr

E-m

buono@

lanzilot
journal homepage: www.elsevier.com/locate/jvlc
End users as co-designers of their own tools and products$,$$
Carmelo Ardito n, Paolo Buono, Maria Francesca Costabile, Rosa Lanzilotti, Antonio Piccinno

Universit �a di Bari Aldo Moro, Dipartimento di Informatica, via Orabona 4, 70125 Bari, Italy
a r t i c l e i n f o

Available online 18 November 2011

Keywords:

End-user development

Meta-design

Design model
6X/$ - see front matter & 2011 Elsevier Ltd.

016/j.jvlc.2011.11.005

ication: This paper is dedicated to the memo

s to some research developed by our rese

ity of Bari working with Piero and his co

ity of Brescia and the University of Milan. It

rly papers by Piero, which show that he was

l languages, in Human–Computer Interactio

ment. Since the 1970s, when Human–Compu

become a discipline in its own right, Pi

n to user needs in the interaction with data

nt issues such as the diversity of users of inter

r computer scientists to develop software

at take into account languages and notations

rk practices, the possibility to allow users to

lves the environments and tools they use

ated with Piero, we learnt to appreciate hi

c and human qualities; we argued a lot in

ur work, and we shared some very enjoyab

his paper has been recommended for accepta

esponding author.

ail addresses: ardito@di.uniba.it (C. Ardito),

di.uniba.it (P. Buono), costabile@di.uniba.it (

ti@di.uniba.it (R. Lanzilotti), piccinno@di.unib
a b s t r a c t

In our Age of exponential technological advance, recent developments are determining

an evolution of end users from passive information consumers into information

producers. Users are increasingly willing and, indeed, determined to shape the software

they use to tailor it to their own needs. Based on a brief review of research activities we

performed in the last decade, this paper analyzes some challenges that software

designers face to comply with the new roles of end users in the software life cycle,

and discusses how to provide end users with software environments that empower

them to become co-designers of their own tools and products. The examples reported in

the paper show why and how end users are involved in design activities in various

application domains.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Software developers and users were traditionally con-
sidered as two distinct communities: developers would
All rights reserved.

ry of Piero Mussio.

arch group at the

llaborators at the

also refers to some

one of the pioneers

n, and in end-user

ter Interaction had

ero devoted close

bases, pointing out

active systems, the

environments and

adopted by users in

adapt and refine by

. In the years we

s wide culture, his

many discussions

le moments of our

nce by S. Levialdi.

M.F. Costabile),

a.it (A. Piccinno).
create computer systems that would then be used by
users to perform their daily activities. By contrast, in
today’s information and communication society, more
and more people do not only use software but also get
involved in creating or modifying it. Thus, their role is no
longer that of passive consumers of computer tools, but is
evolving toward a more active role of information and
software artifacts producers [1]. Web Content Manage-
ment Systems and Enterprise Resource Planners are
significant examples in which users are willing to shape
software [2–7], but this is true in many other domains, as
will be shown in this paper.

Even if the two terms user and end user will be used as
synonyms in this paper, except in cases of ambiguity, it is
worth distinguishing between them: users are all people
interacting with software systems, so even software
engineers are users of the tools and environments
(e.g. CASE tools) they use for their work; end users are
people who are not experts in Computer Science, nor
willing to be, but who use computer systems for their
daily activities, for work as well as for entertainment or
other purposes [8]. Recent technology and the rise of the
so-called Web 2.0 now offer end users the possibility to
perform various activities that involve modification or
even creation of software artifacts: they range from

www.elsevier.com/locate/jvlc
www.elsevier.com/locate/jvlc
dx.doi.org/10.1016/j.jvlc.2011.11.005
mailto:ardito@di.uniba.it
mailto:buono@di.uniba.it
mailto:costabile@di.uniba.it
mailto:lanzilotti@di.uniba.it
mailto:piccinno@di.uniba.it
dx.doi.org/10.1016/j.jvlc.2011.11.005


C. Ardito et al. / Journal of Visual Languages and Computing 23 (2012) 78–90 79
simple parameter customization to more complex activ-
ities, such as variation and assembling of components
[9,10]. These activities are examples of End-User Devel-
opment (EUD), as defined in [11]. In short, end users are
becoming co-designers of their software tools and ser-
vices [12]. This evolution poses a challenge to professional
designers (software engineers), who have to create soft-
ware environments that can empower end users to shape
the software they use, without obliging them to become
programmers.

This paper starts with a brief discussion of the roles of
end users in the software life cycle, and describes joint
research work performed with Piero Mussio and some of
his collaborators at the University of Brescia and the
University of Milan over the last decade. One of Piero
Mussio’s major concerns was the diversity of end users,
this also influenced the research reported in this paper.
Based on various experiences about the development of
interactive systems that address people’s activities in
their daily practice, a design approach has been defined
and progressively refined [8,13,14]. The aim is to create
systems that permit EUD, i.e. that support people to tailor
the software they use to make it better suited to their
own needs, also by creating or modifying software arti-
facts. EUD is not a luxury but a necessity [1], demanding
new paradigms and approaches to create systems to
comply with the new roles of end users in the software
life cycle. This paper describes one of such approaches
and discusses its application through examples that show,
in various contexts, how end users become co-designers
of software.

The paper is organized as follows. Section 2 briefly
discusses how end users roles are evolving towards a
more active participation in the development of compu-
tational artifacts. Section 3 illustrates some challenges
faced when addressing the diversity of end users. Section 4
describes how end user involvement in the whole
software life cycle and the need to support EUD are
determining a shift toward a new software design para-
digm; the approach developed, based on meta-design, is
briefly reported. Section 5 presents some examples, which
show how our approach to create systems enabling end
users to become co-designers of their tools and products
is adapted to comply with different application domains.
Section 6 concludes the paper.

2. About end users

The desire of end users to adapt software to their
needs had already begun to be analyzed by various
authors by the beginning of 1990s; empirical studies on
the activities end users were willing to perform were
reported in [15,16]. End-User Development and End-
Users Software Engineering are terms that have been
coined in the last years to refer to these activities
[11,17–19]. End users are not pure end users any more,
but are determined to become increasingly involved in
software development; some may have certain software
development skills but, surely, they are not interested in
software per se, they simply want to solve their own
specific problems [14].
The activities performed by end users, which result in
software modification, were analyzed in [20]. Two main
types were identified: parameterization and tailoring.

Parameterization refers to activities that allow end users
to choose among alternative behaviors (or presentations
or interaction mechanisms), already available in the
application, by setting some parameters. Other names
used in literature for such activities are customization or
personalization (see, for example [11]); they are already
possible in widely used applications such as Microsoft
WordTM. Tailoring includes all activities that involve some
programming in any programming paradigm, thus creat-
ing or modifying a software artifact. Other analyses of
end-users activities are reported in [21,22].

Our research was originally driven by the specific
needs of people we worked with, who were experts in a
specific discipline, such as geology, mechanical engineer-
ing, medicine, etc.; they required our expertise to develop
interactive systems to support their daily activities.
We called these end users domain-expert users: they are
experts in a specific domain but not necessarily experts in
Computer Science [13]. Today, thanks to the increasing
availability of technology and software applications, we
are facing an exponential increase of the number and type
of end users, ranging from very young to elderly people,
who use computer applications on the Web and on
various mobile devices to support their daily activities.
These are not confined to work, but also include informa-
tion needs, or entertainment and pleasure purposes.
A study published in 2005 estimated that in 2012 there
will be 90 million end users in American workplaces and
fewer than 3 million professional programmers [23].

Most end users have no programming skills and do not
want to be constrained by formalisms unfamiliar to their
culture. They wish to use software environments that are
easily accessible and usable, but which they can tailor to
their needs, tasks and habits. Even if they use software
applications that allow them to create or modify software
artifacts, for example by creating a macro in Microsoft
ExcelTM, they do this without being aware that what they
are doing is programming. In other words, they are
unwitting programmers [24], like the children analyzed
in [25]. Indeed, children playing with a computer often
use sophisticated programming skills, but this is
embedded in an intrinsically motivated activity that they
perceive as something easy and fun to perform. They do
not regard it as programming which, in the child’s
opinion, is very difficult. Various computer applications
allow children to construct interactive simulations, ani-
mations, and games, in a manner that places a lot of
emphasis on construction; they program by composition,
not by algorithm development: their intention is to play
and enjoy, and they do not even realize they are program-
ming. Children learn by trying things out. When they use
a new environment, they do not read tutorials, but go
straight to the example or ask friends. Children greatly
enjoy communicating with friends and possibly perform-
ing collaborative activities, often conducted remotely by
exchanging artifacts online. This behavior is very similar
to that of the end users we analyzed [8,14]: end users
want to manipulate and tailor objects in their software



C. Ardito et al. / Journal of Visual Languages and Computing 23 (2012) 78–9080
environments in order to create new configurations or
new designs. They want to do this as a part of activities
that they are highly motivated to perform, without
thinking that they are programming. As a consequence,
designers should create systems that empower end users
by providing such communication and collaboration cap-
abilities. This is a major point addressed by the EUD
research community, as discussed in [26].

3. User diversity

Addressing user diversity has been a concern of our
research since the very beginning. In particular, we
observed that even the end users of the same interactive
system are often diverse, constituting different commu-
nities characterized by specific cultures, goals, tasks and
context of activity [8]. The projects reported in Section 5
provide various examples of diversity within the target
end users of an interactive system. To ensure a good
design, it is of critical importance to address this diversity
of end users [27]. The slogan ‘‘one size fits all’’ does not
work for user interfaces, as different users of a same
interactive system may need different interfaces that
provide them adequate support. It is well known that
people experience many difficulties when they interact
with a system that has been designed without taking into
account their cultural background, their reasoning strate-
gies, the way they carry out their tasks in their daily
practices, the languages and notations they are familiar
with.

Piero Mussio highlighted this problem in his very first
works dating back to the 1970s. At that time, he was
involved in satellite image processing, but his attention
was already devoted to allowing domain-experts to inter-
act in the best way with the databases storing such
images, while carrying out their analysis work. Citing
from one of his papers [28]: ‘‘The data related with the
surface water system are utilized by several users, accord-
ing to the interdisciplinarity of the system analysisy
Specialists of different disciplines use their languages to
describe phenomena and datay The same elementary
objects and names appear in both descriptions but with
different meaning and associated computationsy The
communication with the user must be different according
to the various disciplines’’. In another section of that
paper, he points out that scientists of different disciplines
have developed their own models and languages, thus
software tools have to match these languages.

It is amazing to see that well before the development
of the worldwide Human–Computer Interaction litera-
ture, Mussio had a clear vision of how to support people
interacting with computer systems by providing them
with user interfaces capable ‘‘to speak the user language’’.
He also declared that what the ‘‘information analyst’’
is required to do is to identify what can be coded in the
user language (i.e. the language for the human–computer
dialog), that is, the user is asked to design with the
‘‘information analyst’’ an ‘‘intermediate language’’ which
is the basis of the query language for the specialized
database [28]. Thus, he anticipates the importance of
defining a user interface and an interaction language to
mediate the communication with the database query
language. It is worth mentioning that Mussio later
became an active contributor to the field of visual lan-
guages, which appeared in the 1980s with the aim of
defining easier to use formal languages. More importantly
for the specific topic addressed in this paper, he foresaw
the collaboration between users, as domain-experts, and
professional developers (called ‘‘information analysts’’) in
the design of the formal language to be used in the
human–computer dialog. In other words, he already had
a vision of end users being co-designers of their environ-
ments and tools, as the recent EUD approaches state.

User diversity has been addressed in our approach to
interactive system design, which states that an interactive
system should propose different interaction environ-
ments, each one suited to a specific community of users
and adopting a language for the human–computer dialog
that is inspired by languages and notations used in the
community’s daily pratice [8]. In a paper published in
1991, Mussio already recommended that ‘‘the variety of
specialized visual and verbal expressions used by the
expert in his traditional activity be translated into a set
of computer languages and organized as an interactive
environment’’ [29]. In another paper in 1992, he antici-
pated EUD and set the basis for the design model we later
developed [30]; for example, he declared that, by colla-
borating with professional developers, the domain expert
‘‘specifies high-level visual languages by which he can
program (i) the interaction necessary to execute and
control his computational tasks, (ii) his own computing
tools, (iii) how input data can be captured by the system
in a way which is natural for the naı̈ve user (naı̈ve from
the Computer Science point of view), and (iv) how output
data can be presented in a form communicable to other
experts’’. In summary, Piero Mussio had a very early
vision that end users would actively participate to create
their system, i.e. would need to be involved in the whole
software life cycle. Our experience confirms this position,
as discussed in the next section.

4. Involving end users in the whole software life cycle

The traditional life cycle of interactive systems distin-
guished between design time and use time. At design
time, system developers would create environments and
tools, figuring out end users’ needs and objectives. At
use time, end users would use the system. Design frame-
works were based on the assumption that major design
activities end at a certain point, after which the use
time begins. End users would be active only at use
time. Even when performing User-Centered Design, which
requires the system to be designed by iterating a design–
implementation–evaluation cycle, development was car-
ried out by software professionals, while end users only
use the system and, at most, are involved in prototype
evaluation [31].

Participatory Design was introduced as a design para-
digm which considered the participation of end users in
the design process [32]. The rationale was that users are
experts of the work domain so a system can be effective
only if these experts are allowed to participate in its



C. Ardito et al. / Journal of Visual Languages and Computing 23 (2012) 78–90 81
design, indicating their needs and expectations. Thus, end
users had become members of the design team, but no
tools were yet provided to let them create or modify
software.

More recently, EUD started the trend toward a more
active involvement of end users in the overall software
design, development, and evolution processes. Tasks that
are traditionally performed by professional software
developers are transferred to end users, who become
co-designers of the tools and products they will use.
Of course, end users have to be specifically supported in
these new roles of designers and developers. This does not
imply transferring the responsibility of good system
design to them. It actually makes the work of professional
developers even more difficult, since it is still their
responsibility to ensure the quality of the artifacts created
by end users. These issues are discussed in [18]. Some
EUD-oriented techniques have already been adopted in
software for the mass market, such as the adaptive menus
in Microsoft WordTM or some Programming by Example
techniques in Microsoft ExcelTM. iGoogleTM is another
excellent example of a Web application which requires
end users to perform EUD activities to tailor the available
software tools to their own needs [33].

In order to allow end users to create and modify
software artifacts, a two-phase design process must be
considered: the first phase (meta-design phase) consists
of designing the design environments, i.e. the environ-
ments suited to the diverse stakeholders who participate
in the design of the final applications; the second phase
consists of designing the final applications, using the
design environments. The two phases are not clearly
distinct, and are executed several times in an interleaved
way because the design environments evolve, both as a
consequence of the progressive insights the different
stakeholders gain into the design process, and as a
consequence of the feedbacks provided by end users
working with the system in the field. This two-phase
process requires another shift in the design paradigm,
which moves from participatory design to meta-design
(i.e. design for designers) [8,12].

In EUD approaches, the separation between design
time and use time becomes fuzzy [34]. This is true also
in recent software development methodologies, like Agile
Development [35]. These two stages are now bridged into
a unique ‘‘design-in-use’’ continuum that permits the
creation of open and continuously evolvable systems,
which are extended and/or redesigned at use time by
end users collaborating with all the other stakeholders.
This design paradigm considers software design as an
evolutive and never-ending process, which can be mod-
eled as a design-develop-use-evolve cycle. In agreement
with other authors, we can say that the system is in a
‘‘perpetual beta’’ version [36].

The shift towards a new approach to create interactive
systems was confirmed by a study commissioned by the
U.S. Department of Defense, which clearly states
that development activities will in the near future be
distributed and initiated by various stakeholders [37].
Besides end users (of possibly different types), who
‘‘own’’ the problem, and software engineers, who ‘‘own’’
the technology, in the design team other experts and/or
stakeholders are needed, e.g. Human–Computer Interac-
tion (HCI) experts, who know human factors and may
advise on the design of usable systems capable of gen-
erating a valuable user experience; marketing experts,
who may advise on how to design a product with market
appeal; graphic designers, who should contribute to the
design of an attractive user interface; other experts of the
system domain. These people contribute to the system
design with their own expertise. They need different
software environments, specific to their culture, knowl-
edge and abilities, through which they can contribute to
shape software artifacts. They should also be able to
exchange among themselves the results of these activities
in order to converge toward a common design.

Over the years, we have been working on the creation
of software infrastructures that support EUD activities as
well as knowledge creation and sharing among the
stakeholders involved. This research resulted in the defi-
nition of a design approach based on the Software Shap-
ing Workshop (SSW) model, which allows a team of
experts to cooperate in the design, development, use
and evolution of interactive systems [8,13,14]. The SSW
model supports meta-design in that it prescribes that,
instead of developing the final interactive system as in
traditional design approaches, professional developers
should design software environments for the different
communities of stakeholders involved in the creation of
the system, who will use such environments not only to
carry out specific tasks at use time, but also to contribute
to design and evolution of the interactive system [38].
These software environments are called Software Shaping

Workshops (SSWs or briefly workshops). The term work-

shop comes from the analogy with an artisan’s workshop
(e.g. the joiner’s or the smith’s workshop), i.e. the work-
room where the artisan finds all and only those tools
necessary to carry out her/his activities. Each SSW pro-
vides an interaction language tailored to its users’ culture,
since it is defined by formalizing the traditional user
notations and system of signs [39]. Communication chan-
nels among the various workshops are provided in order
to support collaborative development and evolution.
Thus, the workshops act as cultural mediators among
the different stakeholders by presenting the shared
knowledge according to their own languages. The SSWs
are designed according to the ‘‘gentle slope of complexity’’
principle [10,27,40]: people find in their SSW only those
tools and functionalities necessary to their tasks, pre-
sented in a way that is adequate to their culture and skills,
so that they can easily use them. Of course, once users get
familiar with their SSW, they may require new and more
complex functionalities: such needs likely crop up later
on determined by users’ evolution during time.

To summarize the SSW approach, the first important
step is a study aimed at accurately gathering users and
system requirements. In particular, those stakeholders
who may contribute to one or more of the phases of the
software life cycle have to be identified and analyzed.
Then, the meta-design team is defined which, besides
professional developers who are the technology experts,
and HCI experts, includes at least the domain and



C. Ardito et al. / Journal of Visual Languages and Computing 23 (2012) 78–9082
problem experts. This team creates the SSWs for the
involved stakeholders. Since domain experts are usually
not familiar with software tools, to let them contribute to
the design of the final application, the meta-design team
develops proper application templates. The template is
intended as a schema or a skeleton, which facilitates the
assembling of some basic components. In the SSW
approach, an application template aims at guiding the
design activities of the stakeholders involved, who will
behave as unwitting programmers, creating or modifying
software artifacts without explicitly programming.

Another model proposed to support meta-design is
Seeding, Evolutionary and Reseeding (SER) [41]. Instead of
building a complete system at design time, the system
design starts from seeds which are developed by meta-
designers collaborating with end users; a subsequent
evolutionary growth follows, and then a reseeding phase
occurs. The seeding phase concerns the definition of the
initial state (seed) of a software artifact, which will be
used by end users to perform their activities. The reseed-
ing of a software artifact is performed by any designer to
modify the initial state of a software artifact. The evolving
system continually alternates between periods of
unplanned evolutions by end users and periods of delib-
erate restructuring and enhancement, involving end users
in collaboration with designers. Compared with the SER
model, the SSW model more explicitly considers that end
users can even take on the role of meta-designers; it also
blurs the distinction between design time and use time.
Indeed, as shown in some examples in the next section,
meta-design is not only performed by software engineers,
but some end users themselves want to shape software
artifacts that are used by other end users to design other
artifacts. Moreover, the SSW model indicates how to
support the designers in the reseeding phase, since there
is ongoing communication among the SSWs of end users,
professional developers and other stakeholders.

5. EUD in different application domains

This section presents some examples showing that
EUD activities are needed in many contexts and illustrat-
ing how the SSW meta-design approach is carried out in
the different application domains. In Section 5.1, the
design of the electronic patient record in the medical
domain is discussed. Section 5.2 presents a Web portal
whose aim is to allow end users to contribute to the
design of virtual shop windows for advertising purposes.
Section 5.3 describes the EUD-based design of educational
games in the cultural heritage domain. In Section 5.4, a
recent project on product customization whose aim is to
empower customers to create their own furniture is
illustrated.

5.1. Designing the electronic patient record

Management of the Electronic Patient Record (EPR) is a
key problem in the medical domain, which has been
addressed by various researchers [42–44]. No generally
accepted implementation of the EPR yet exists, because it
is still commonplace that individual hospitals, and even
specific departments within the same hospital, create
their own procedures. Physicians, nurses and other opera-
tors in the medical field are reluctant to accept a common
unified format; they want to customize and adapt the
patient record to their specific needs, as various authors
also observed [45,46]. Thus, the EPR is a natural target
for EUD.

The patient record is a many-sided document: it is
read and understood by very different people, not only
physicians and nurses, but also the patients themselves,
their relatives, etc., thus it must have the ability to speak
different ‘‘voices’’ to convey different meanings according
to people using it [46]. Patient records are official artifacts
that practitioners write to preserve the memory or knowl-
edge of facts and events that occurred in the hospital
ward [47]. The patient record has two main roles: a short-
term role to collect and memorize data keeping trace of
the medical care provided during the patient’s hospital
stay; a long-term role in storing the patient’s data for
research or statistical purposes [48]. Accordingly, the
specialized literature distinguishes between the primary
and secondary purposes. Primary purposes include the
demands for autonomy and support of practitioners
involved in the direct and daily care of patients, while
secondary purposes are the main focus of the hospital
management, pursued in order to rationalize care provi-
sion and enable clinical research [46].

In most systems proposed so far for EPR management,
pre-defined document templates and masks are usually
imposed on practitioners, without considering the specific
needs and habits of those who are actually using the EPR.
The combination of requirements for both standardiza-
tion and customization is a further element pushing
toward the adoption of EUD techniques for managing
EPRs. We present here our proposal to create an EPR
whose structure and functionalities support the specific
needs of each stakeholder involved, by allowing them to
contribute to design and/or tailoring the EPR.

We conducted a field study at the ‘‘Giovanni XXIII’’
Children Hospital of Bari, whose purposes were: (1) to
understand which kind of documents, tools and languages
were used in order to identify the requirements of a
system implementing the EPR; (2) to identify the stake-
holders to be included in the design team. Unobtrusive
observations in the wards, informal discussions, indivi-
dual interviews were performed. The analysts involved in
the study periodically observed different people during
their daily work in the hospital. An important point
emerged: in each ward, even in the same hospital, there
are specific patient records; this is because different data
need to be stored, depending on the specific ward. For
example, in a children’s neurological ward, information
about newborn feeding must also be available, while in an
adult neurological ward, information about alcohol and/or
drug consumption is required. The patient records are
actually composed of modules, each one containing spe-
cific fields for collecting patient data. Various hospital
employees are interested only to a subset of such mod-
ules, and use them to accomplish different tasks, i.e. the
nurse records the patient’s measurements, the reception
staff records the patient’s personal data, the physician



C. Ardito et al. / Journal of Visual Languages and Computing 23 (2012) 78–90 83
examines the record to formulate a diagnosis, and so
on. Moreover, the following main stakeholders who
are involved in the EPR management were identified:
(1) practice manager; (2) head physicians; (3) physicians;
(4) nurses; and (5) administrative staff. In particular, the
head physician has the right and the responsibility of the
EPR to be adopted by physicians and nurses of his ward.

According to the SSW model, we created the meta-
design team composed by software engineers, HCI experts
and the practice manager, a domain-expert whose knowl-
edge is necessary to design the EPR modules. The meta-
design team created the SSWs for the different stake-
holders, as well as the data modules, which are the basic
component of the EPR, and the application template to
allow each head physician to design the EPR for her/his
ward by directly manipulating data modules in her/
his SSW.

We briefly describe here the prototype system for the
management of the EPR. The focus of this prototype is on
the activities of the head physicians for shaping the EPR.
The system is composed of a network of software envir-
onments (SSWs), each devoted to a different type of
stakeholder to let them accomplish their tasks in a
comfortable and suitable way. The SSWs used by physi-
cians and the ones used by nurses of a specific ward result
from the design activity performed by the head physician.

Let us consider a specific example. The SSW developed
for the head physician of a specific ward allows him
(in our case he is a man) to design the EPR tailored to
the ward needs by choosing from the pre-designed
modules those appropriate to the ward, and assembling
them in the preferred layout. Fig. 1 shows the SSW for the
neurology head physician. The working area of the SSW is
divided in two parts: in the left part are the modules
he can insert in the EPR (‘‘Moduli Inseribili’’ in Italian),
Fig. 1. A screen shot of the SSW for the user ‘‘Dan’’, the head ph
the right part shows the current design of the EPR
(‘‘Cartella Clinica’’) performed by the head physician. For
example, Fig. 1 shows, on the left, a module about
Standard Growth Charts (‘‘Misure Antropometriche all’in-
gresso’’), which includes data about Weight (‘‘Peso’’),
Height (‘‘Altezza’’), Head Circumference (‘‘Circonferenza
cranica’’). Another module is about Feeding (‘‘Allatta-
mento’’) and includes data about breast or artificial
feeding; in cases of artificial feeding, more data about
the type of milk and other aspects are included. The
neurology head physician creates his tailored EPR by
dragging and dropping the modules from the left part of
his SSW to the desired position in the right part. In the
example shown in Fig. 1, the neurology head physician
has already inserted some modules, namely a heading
reporting information about the hospital and the ward;
the patient’s personal data, i.e. last name (‘‘Cognome’’),
first name (‘‘Nome’’), birth date (‘‘Data Nascita’’), etc.; a
module with Basic Laboratory Tests (‘‘Routine Ematica’’);
a module for information about Required Consultations
(‘‘Consulenze Inviate’’). In the figure, the head physician is
dragging the module about Tests Performed Outside the
Hospital (‘‘Esami Fuori Sede’’) to insert it in his EPR. Once
the EPR design is completed, the head physician clicks on
the Save button (‘‘Salva Layout’’ in Italian). In this way, he
has actually created a software artifact that will be used
by the neurology ward personnel.

Fig. 2 shows how the EPR designed by the head
physician appears in the SSW of the nurses of his ward
(for privacy reasons, in figures dummy data are shown).
A nurse primarily uses the EPR to input patients’ data.
This end user does not have the EUD possibilities allowed
to the head physician in his SSW: nurse’s tailoring is
limited to modifying the layout of the EPR modules. For
example, if her/his current activity is to insert patients’
ysician (‘‘Primario’’) of the Neurology (‘‘Neurologia’’) ward.



Fig. 2. A screen shot of the SSW for the user ‘‘Cic’’, a nurse of the Neurology (‘‘Neurologia’’) ward.

C. Ardito et al. / Journal of Visual Languages and Computing 23 (2012) 78–9084
data about ‘‘Routine Ematica’’, s/he can move this module
to the top of the SSW by clicking on the ‘‘Up’’ button (‘‘Su’’
in Italian).

In a similar way, the head physician designs the SSW
to be used by the physicians of his ward. Over time, if
necessary, the head physician can update the EPR for his
ward by inserting new modules among those already
designed. If what he requires does not yet exist, he refers
to the meta-design team, who has to create new modules
and make them available in the SSW of the stakeholders.

We are well aware that there is a long way from this
prototype to a completely working system, but the
formative user testing we performed with physicians
and nurses confirmed our idea that users appreciate the
possibility to shape the EPR according to their needs.
A main goal of our work is to inform designers of EPRs of
the value of EUD approaches in the medical domain.

5.2. Designing virtual showrooms on the Web

This section describes a recent project about the
development of a Web portal for a company that provides
advertisement spaces for shops of various natures
through virtual windows appearing in the portal. The
virtual windows are designed according to different
patterns, which include various type of multimedia ele-
ments, such as text, pictures, FlashTM animations, videos,
etc. The company sells virtual windows to shops for
advertising purposes. The virtual windows are sold at
different prices according to the complexity of the pattern
(in terms of combined multimedia elements). An innova-
tive feature of the portal is that the shops’ owners are
allowed to create and manage the content of their own
virtual windows.

A preliminary study indicated the following main
stakeholders of this system [49]: (1) Web surfers, who
are people browsing the virtual windows; (2) shop owners,
who provide multimedia contents to be shown in their
virtual windows; (3) editorial staff members, who are
company employees that manage the available patterns
of virtual windows; and (4) system administrator, a com-
pany employee with some Computer Science knowledge.
The system administrator is a member of the meta-design
team that, working with software engineers and HCI
experts, develops the SSWs for the different stakeholders
and creates the patterns of virtual windows to be sold.

As an example of how a shop owner (a woman) uses
her SSW to manage and craft her virtual windows, let us
consider what happens when she wants a feature mod-
ified in her virtual window. Fig. 3 refers to the screen shot
of the SSW that, in the central part, shows the virtual
window whose pattern is composed of a textual descrip-
tion (left side) and a photo gallery (right side) with one
large picture and three small pictures at the bottom.
As illustrated in Fig. 3, the shop owner uses the tool
available in her SSW (through the item ‘‘Richiesta mod-
ifica’’ in the left menu) to request the changes she wants
on a widget of the interface she indicates with a mouse
click. In this example the photo gallery has been indi-
cated: a popup window is shown, where the user writes
her request, namely to shows four pictures in the gallery.

The request is received by a member of the editorial
staff and visualized in her/his SSW as an item in a table at
the screen bottom (Fig. 4). The table shows all requests



Fig. 3. Through the annotation tool in her SSW, the shop owner makes a request to the editorial staff.

Fig. 4. A screen shot of the SSW of the editorial staff, showing that the request sent by the shop owner is visualized as an item in a table (at the bottom of

the figure).

C. Ardito et al. / Journal of Visual Languages and Computing 23 (2012) 78–90 85
possibly issued by other shop owners. It is worth noticing
that the representation of a same message is different in
the two SSWs: in the SSW of the shop owner, the request
is a text in an annotation; in the SSW of the editorial staff,
it is an item in a table, with several attributes that, even if
represented by codes, are understandable by the SSW
users.

If the editorial staff member can directly manage the
request, s/he performs the necessary software modifica-
tion and communicates it to the shop owner. For example,
if a pattern with more pictures exists, the editorial staff
member makes it available in the SSW of the shop owner,
who will update the content of the new pattern.
Otherwise, the editorial staff member communicates in
a similar way with the administrator in order to ask
for the creation of the new pattern satisfying the shop
owner’s request [49].

5.3. Designing educational games in the cultural heritage

domain

Over the years, we have been involved in research
projects that are aimed at developing interactive applica-
tions for supporting visits to cultural heritage sites. In
particular, pupils aged 10–13 years old have been
addressed, designing educational games on newfangled



C. Ardito et al. / Journal of Visual Languages and Computing 23 (2012) 78–9086
devices, such as cell phones and large multitouch dis-
plays; which can potentially arouse pupils’ curiosity and
to engage them in their learning activities. The excursion-
game has been developed; it is a pervasive game on cell
phones to be played by groups of pupils exploring outdoor
cultural heritage sites, like archaeological parks [50,51].

The successful design of this type of applications requires
the joint effort of several stakeholders with different/specific
skills, namely: (a) Education experts, who contribute to
specifying and reviewing requirements in design and eva-
luation of educational applications; (b) Cultural Heritage (CH)
experts, who play a fundamental role in designing and
developing applications that support visits to CH sites; (c)
visitors, who use the developed applications. We describe
here how the SSW model has been applied to create an
environment (CH expert workshop), which allows CH
experts to be co-designers; having no expertise in applica-
tion design, they need a proper environment to carry out
EUD activities. According to the SSW model, software
engineers, together with HCI experts and other domain
experts (e.g. education experts, CH experts), design software
environments (SSWs) to be used by the communities of
stakeholders. This meta-design activity also creates tem-
plates of the applications that support visitors of CH sites, as
well as building blocks through which experts give content
and functionalities to such applications.

Applications for visiting CH sites can be of different
types, depending on the target visitors: while an excur-
sion-game is suitable for schoolchildren, other types of
guide are proposed to adults or more expert visitors
(e.g. history experts or scholars). The CH expert workshop
illustrated here evolve the one in [52]; it is inspired by
YahooPipes [53] and allows CH experts to contribute
to the design of the final application. It offers a visual
design environment, application templates, and building
blocks [54]. In other words, CH experts create the final
applications from the templates by composing building
Fig. 5. A screen shot of the
blocks that allow them to shape user interfaces, function-
alities and multimedia content without the direct help of
professional developers. For instance, if the application is
an excursion-game, the CH expert has to specify all the
elements required by the game, namely the character to
be impersonated and the prologue (i.e. the game intro-
duction), missions to be performed, hints, places to be
discovered (goals), 3D reconstructions of places, etc. [50].
In the example shown in Fig. 5, the CH expert is interact-
ing with his own workshop for creating an excursion-
game for the archeological park of Egnathia, in Southern
Italy. First, he has selected Excursion-Game as application
template. Thus, the workshop shows a screen in which he
properly combines building blocks, chosen from the
elements listed in the left toolbar. The screen shot in
Fig. 5 shows a situation in which the expert has already
defined the game prologue by connecting the Prologue

building block to the root Excursion-Game. It has also
defined some missions. Specifically, the building block
Mission represents a single mission of the game. If the CH
expert wants to add a mission, he drags the Mission

building block from the toolbar to the main area of his
workshop. Then he draws a line between the connection
point of the Mission and the Prologue building block. If a
building block allows 1:N connections, a Connector ele-
ment is used. In Fig. 5, three missions, i.e. ‘‘Mission1’’,
‘‘Mission2’’ and ‘‘Mission3’’, have been connected to the
Prologue through a Connector. The building block refer-
ring to ‘‘Mission1’’ is maximized because the CH expert is
defining the text of the mission. For each mission, the CH
expert is also defining goal and hints. For example, the
goal of Mission1 is to reach the kiln (‘‘Fornace’’ in Italian).
Thus, when the mission is solved, the 3D reconstruction of
the kiln is shown. The Oracle Hint building block permits
CH expert to specify some hints for solving a mission.

The developed applications can be further modified by
CH experts over the time. For instance, new missions can
CH expert workshop.



C. Ardito et al. / Journal of Visual Languages and Computing 23 (2012) 78–90 87
be added to an excursion-game. Only when CH experts
need new functionalities or new building blocks in their
workshop, do they refer to software engineers who,
collaborating with the other experts at the meta-design
level, will update the CH expert workshop by providing
the required elements.
5.4. Designing classic style furniture

The project described in this section is different from
the previous ones, since it addresses design activities that
people perform on goods they are buying. Thanks to the
new technologies, the demand for narrow-target goods
and services not available in traditional bricks and mortar
stores can be as economically attractive as mainstream
fare. More and more companies are taking into account
opportunities to provide individual customers with
unique personalized goods. Product configurators, also
known as mass customization toolkits, design kits, or
toolkits for user innovation and design, are now available
[55–57]. They allow customers to change several aspects
of the product, e.g. color, material, writings, etc. An
example is the product configurator of IKEATM: the
customer can select a product from the catalog, e.g. a
table, and change some of its features, like the type of
wood, the size, the color. A limitation of such configura-
tors is that the changes allowed are constrained within a
limited range of possibilities. For example, the IKEATM

configurator does not permit customers to modify the
drawers of a table as they like, because the personaliza-
tion possibilities are pre-defined.
Fig. 6. A screen shot of the workshop
The project presented here has been motivated by
Maiellaro s.r.l., a company in the Puglia region that
produces classic style furniture. Since this type of furni-
ture is very expensive, the company produces only pieces
that are ordered by customers: they look at the company
catalogs and provide a description of the piece of furni-
ture they want, which may be composed of parts chosen
from different items in the catalogs; they also specify
dimensions, type of wood and other characteristics.
Currently, the customer sketches his/her design on
papers, which are sent via fax to the company for
approval; the price of the new piece of furniture is also
negotiated via fax or e-mail between company and
customer. Aim of the project is to create a web-based
system that allows customers to design the desired
furniture and that manages the order process. Compared
to the product configurators on the market, customers
have much more freedom in designing their furniture;
this is made possible by an ontology that models the
possible composition of different parts in a whole piece.
The ontology describes the components of each piece of
furniture and their properties, i.e. it specifies colors, size,
decorations, shapes, materials, etc., and provides all rules
and constraints for assembling various components, so
that the user is guided in the design of the desired pieces
of furniture [58].

After a field study at the Maiellaro company for
requirements analysis, we identified the following stake-
holders: (1) the managing director, who supervises the
company business processes and, in particular, is in
charge of the approval of the order of new pieces of
furniture, designed by the customers, which will then be
for the company’s customers.



C. Ardito et al. / Journal of Visual Languages and Computing 23 (2012) 78–9088
inserted in the company catalogs; (2) sales department

employees, who manage customers’ orders in collabora-
tion with the technical department; (3) technical depart-

ment employees, who manage technical aspects of new
pieces of furniture designed by customers and have the
responsibility of updating the ontology when new cata-
logs or new furniture are added; and (4) customers, who
order pieces of furniture they have created.

Following the SSW model, the system supporting the
negotiation process between customers and company is
composed by the workshops for each community of
stakeholders, created by the meta-design team. The work-
shop for customers, which allows them to create the
desired piece of furniture, is shown as an example in
Fig. 6. The customer is browsing the catalog, shown at the
top of the screen, where products are organized by
category, e.g. Dressers (‘‘Cassettiere’’), Consoles (‘‘Con-
solle’’), etc. Fig. 6 shows that the user has selected the
Console category thus in the central part of the screen the
different consoles available in the catalog are displayed.
The customer chooses a console of interest by clicking on
its picture, and a thumbnail of that item appears in the
box at the bottom of the screen. In Fig. 6 three consoles
have been selected. When the customer has selected all
items of interest, s/he goes on to create the piece s/he
wishes. This piece can be either a specific item s/he found
in the catalog, for which the customer only wants to
modify certain features, e.g. type of wood, size, etc., or it
can be the result of a more sophisticated design process,
i.e. the composition of parts taken from different items.
For example, the customer might desire a console made
up of components taken from the selected items in the
box at the bottom. S/He will go on with her/his customi-
zation process by clicking on the link ‘‘Personalizzazione’’
at the bottom right of the screen (see Fig. 6). A new screen
will appear, where s/he can indicate the component of
interest in each of the consoles previously selected. The
reader can refer to [58] for more details. Once the user has
completed the desired console, the sales department
checks the received design by collaborating with the
technical department. Once the new design is accepted
and sales department and customer have agreed on the
price (by communicating through their respective SSWs),
the official order is delivered and the production of the
console starts.

6. Conclusions

This paper has explored the roles of end users in the
life cycle of interactive systems, determined by end users’
increasing desire to become information producers, to
shape the software they use and to contribute to the
design of their own products. These roles are driving the
trend towards a design paradigm that considers software
design as an evolutive and never-ending process, which
can be modeled as a design-develop-use-evolve cycle.
This poses several challenges to professional developers,
who have to become meta-designers, i.e. they have to
design systems that permit end users to become designers
themselves and to collaborate in their EUD activities with
other stakeholders.
When performing EUD, end users behave as unwitting
programmers, i.e. they have to be enabled to create or
modify software, but this has to be permitted through
software environments that recreate situations they are
familiar with in their daily practices, so that they do this
as part of activities they are highly motivated to perform,
without being aware of programming. Such environments
should comply with the ‘‘gentle slope of complexity’’
principle, thus they have to be open systems that can
easily co-evolve with end users.

Another basic principle of our research work,
addressed in this paper, is the diversity of end users
[8,27]. This makes it necessary to: (a) perform a careful
analysis of end users targeted by the system; (b) provide
different support to different end users. As we have
pointed out, this was Piero Mussio’s major concern since
the beginning of his work in 1970s.

To comply with these challenges, the model of meta-
design we have illustrated in this paper prescribes that
the different communities of end users as well as the
other communities of stakeholders must be provided with
different software environments, each suited to the spe-
cific skills and needs of the community it is intended for.
The interactive system is thus designed as a network of
software environments with proper communication
channels among them [8]. By interacting with such
environments, end users will perform their tasks
(use phase), but some of them will also perform EUD
activities, contributing to design, development and evolu-
tion of the system. This paper presents several examples
of application of the design model we have developed. We
hope it will provide insights for involving end users to
contribute to the design of software artifacts and products
they use.

Our work is in line with the so-called ‘‘culture of
participation’’, which means that ‘‘people are provided
with the means to participate and to contribute actively in
personally meaningful problems’’ [59] (see also [60]).
Contexts in which the culture of participation has been
explored include architectural design and urban planning,
design of computational artifacts, models of teaching and
learning. The research we have carried out with Piero
Mussio in the last decade has concentrated on models and
approaches to system development that foster the culture
of participation in the creation of computational artifacts.
Acknowledgments

This work was supported by the Italian MIUR through
grant ‘‘CHAT’’, by the EU and the Regione Puglia through
grant ‘‘DIPIS’’ and grant ‘‘Tecnologie End-User Develop-
ment per la personalizzazione di mobili classici italiani’’,
POR Puglia 2007–2013.

References

[1] G. Fischer, End user development and meta-design: foundations for
cultures of participation, Journal of Organizational and End User
Computing 22 (2010) 52–82.

[2] N. Zang, M.B. Rosson, Playing with information: how end users
think about and integrate dynamic data, in: Proceedings of:



C. Ardito et al. / Journal of Visual Languages and Computing 23 (2012) 78–90 89
Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), IEEE Computer Society, Corvallis, Oregon, USA, 2009,
pp. 85–92.

[3] C. Soh, S.S. Kien, J. Tay-Yap, Enterprise resource planning: cultural
fits and misfits: is ERP a universal solution? Communications of the
ACM 43 (2000) 47–51

[4] A. Molla, I. Loukis, Success and Failure of ERP Technology Transfer:
A Framework for Analysing Congruence of Host and System
Cultures, Working Paper Series, 2005.

[5] D. Fogli, L. Parasiliti Provenza, Information System Customization—

Toward Participatory Design and Development of the Interaction
Process, in: Proceedings of: International Conference on Enterprise
Information Systems (ICEIS), Milan, Italy, 2009, pp. 72–77.

[6] C. Dörner, S. Draxler, V. Pipek, V. Wulf, End Users at the Bazaar:
Designing Next-Generation Enterprise Resource Planning Systems,
IEEE Software, IEEE Computer Society, Los Alamitos, CA, USA, 2009,
pp. 45–51.

[7] Y. Dittrich, S. Vaucouleur, S. Giff, ERP Customization as Software
Engineering: Knowledge Sharing and Cooperation, IEEE Software,
Los Alamitos, CA, USA, 2009, pp. 41–47.

[8] M.F. Costabile, D. Fogli, P. Mussio, A. Piccinno, Visual interactive
systems for end-user development: a model-based design metho-
dology, IEEE Transactions of the Systems, Man, and Cybernetics A
37 (2007) 1029–1046.

[9] A.I. Mørch, G. Stevens, M. Won, M. Klann, Y. Dittrich, V. Wulf,
Component-based technologies for end-user development, Com-
munications of the ACM 47 (2004) 59–62.

[10] V. Wulf, V. Pipek, M. Won, Component-based tailorability: enabling
highly flexible software applications, International Journal of
Human–Computer Studies 66 (2008) 1–22.

[11] H. Lieberman, F. Patern �o, V. Wulf (Eds.), End User Development, 9,
Springer, Dordrecht, The Netherlands, 2006.

[12] G. Fischer, E. Giaccardi, Y. Ye, A. Sutcliffe, N. Mehandjiev, Meta-
design: a manifesto for end-user development, Communications of
the ACM 47 (2004) 33–37.

[13] M.F. Costabile, D. Fogli, G. Fresta, P. Mussio, A. Piccinno, Building
environments for End-User Development and Tailoring, in: Pro-
ceedings of IEEE Symposium on Human Centric Computing Lan-
guages and Environments, IEEE Computer Society, Auckland, New
Zealand, 2003, pp. 31–38.

[14] M.F. Costabile, D. Fogli, P. Mussio, A. Piccinno, End-user develop-
ment: the software shaping workshop approach, in: H. Lieberman,
F. Patern �o, V. Wulf (Eds.), End User Development, 9, Springer,
Dordrecht, The Netherlands, 2006, pp. 183–205.

[15] W.E. Mackay, Triggers and barriers to customizing software, in:
Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems: Reaching through Technology, ACM, New
Orleans, Louisiana, United States, 1991, pp. 153–160.

[16] B. Nardi, A Small Matter of Programming: Perspectives on End User
Computing, The MIT Press, Cambridge, MA, 1993.

[17] A. Sutcliffe, N. Mehandjiev, Introduction special issue: end-user
development, Communications of the ACM 47 (2004) 31–32.

[18] M. Burnett, C. Cook, G. Rothermel, End-user software engineering,
Communications of the ACM 47 (2004) 53–58.

[19] A.J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett, M. Erwig,
C. Scaffidi, J. Lawrance, H. Lieberman, B. Myers, M.B. Rosson,
G. Rothermel, M. Shaw, S. Wiedenbeck, The state of the art in end-
user software engineering, ACM Computing Surveys 43 (2011) 1–44.

[20] M.F. Costabile, D. Fogli, C. Letondal, P. Mussio, A. Piccinno, Domain-
expert users and their needs of software development, in: Proceed-
ings of the 2nd International Conference on Universal Access in
Human–Computer Interaction, Lawrence Erlbaum Associates, Inc.,
Crete, Greece, 2003, pp. 532–536.

[21] A. Mørch, Three levels of end-user tailoring: customization, inte-
gration, and extension, in: M. Kyng, L. Mathiassen (Eds.), Compu-
ters and Design in Context, MIT Press, 1997, pp. 51–76.

[22] Y. Ye, G. Fischer, Designing for participation in socio-technical
software systems, in: C. Stephanidis (Ed.), Universal Access in
Human Computer Interaction. Coping with Diversity, Lecture Notes
in Computer Science, vol. 4554, Springer, Berlin, 2007, pp. 312–321.

[23] C. Scaffidi, M. Shaw, B. Myers, Estimating the numbers of end users
and end user programmers, in: IEEE Symposium on Visual Lan-
guages and Human-Centric Computing, IEEE Computer Society,
2005, pp. 207–214.

[24] M.F. Costabile, P. Mussio, L. Parasiliti Provenza, A. Piccinno,
Advanced visual systems supporting unwitting EUD, in: Proceed-
ings of the International Conference on Advanced Visual Interfaces
(AVI), ACM, Naple, Italy, 2008, pp. 313–316.
[25] M. Petre, A.F. Blackwell, Children as unwitting end-user program-
mers, in: Proceedings of the IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC), IEEE Computer Society,
Coeur d’Al�ene, Idaho, USA, 2007, pp. 239–242.

[26] G. Stevens, V. Pipek, V. Wulf, Appropriation infrastructure: mediat-
ing appropriation and production work, Journal of Organizational
and End User Computing (JOEUC) 22 (2010) 58–81.

[27] A. MacLean, K. Carter, L. Lövstrand, T. Moran, User-tailorable
systems: pressing the issues with buttons, in: SIGCHI Conference
on Human Factors in Computing Systems: Empowering People,
ACM, Seattle, WA, United States, 1990, pp. 175–182.

[28] P. Mussio, R. Rabagliati, Analysis of water remote sensed data:
requirements for data bases and data bases interactions, in:
A. Blaser (Ed.), Data Base Techniques for Pictorial Applications,
81, Springer, Berlin, Heidelberg, 1980, pp. 369–411.

[29] P. Mussio, M. Pietrogrande, M. Protti, Simulation of hepatological
models: a study in visual interactive exploration of scientific
problems, Journal of Visual Languages and Computing 2 (1991)
75–95.

[30] P. Mussio, M. Finadri, P. Gentini, F. Colombo, A bootstrap approach
to visual user-interface design and development, The Visual Com-
puter 8 (1992) 75–93.

[31] International Organization for Standardization, ISO 13407: Human-
Centered Design Process for Interactive Systems, 1999.

[32] D. Schuler, A. Namioka, Participatory Design: Principles and Prac-
tices, Lawrence Erlbaum Associates, Inc., 1993.

[33] Google, iGoogle, 2011, /http://www.google.com/igS, accessed on
April 28, 2011.

[34] V. Pipek, V. Wulf, Infrastructuring: toward an integrated perspec-
tive on the design and use of information technology, Journal of the
Association for Information Systems 10 (2009).

[35] K. Beck, C. Andres, Extreme Programming Explained: Embrace
Change, 2nd edition, Addison-Wesley Professional, 2004.

[36] T. O’Reilly, What is Web 2.0: Design Patterns and Business Models
for the Next Generation of Software 2005, /http://www.oreillynet.
com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.htmlS,
accessed on April 28, 2011.

[37] Software Engineering Institute, Ultra-Large-Scale Systems: The
Software Challenge of the Future, Carnegie Mellon University,
Pittsburgh PA, 2006, /http://www.sei.cmu.eduS, accessed on Feb-
ruary 22, 2011.

[38] M.F. Costabile, P. Mussio, L. Parasiliti Provenza, A. Piccinno, Sup-
porting end users to be co-designers of their tools, in: V. Pipek,
M.B. Rosson, B. de Ruyter, V. Wulf (Eds.), End-User Development,
Lecture Notes in Computer Science, vol. 5435, Springer, Berlin,
Heidelberg, Germany, 2009, pp. 70–85.

[39] K.E. Iverson, Notation as a tool of thought, Communications of the
ACM 23 (1980) 444–465.

[40] M. Spahn, C. Doerner, V. Wulf, End user development: approaches
towards a flexible software design, in: Proceedings of the 16th
European Conference on Information Systems, Galway, Ireland,
2008.

[41] G. Fischer, Seeding, evolutionary growth and reseeding: construct-
ing, capturing and evolving knowledge in domain-oriented design
environments, Automated Software Engineering 5 (1998) 447–464.

[42] G. Hardstone, M. Hartswood, R. Procter, R. Slack, A. Voss, G. Rees,
Supporting informality: team working and integrated care records, in:
Proceedings of the 2004 ACM Conference on Computer Supported
Cooperative Work, ACM, Chicago, IL, USA, 2004, pp. 142–151.

[43] M. Berg, E. Goorman, The contextual nature of medical information,
International Journal of Medical Informatics 56 (1999) 51–60.

[44] B.R. Winthereik, S. Vikkelsö, ICT and Integrated care: some dilem-
mas of standardising inter-organisational communication, Compu-
ter Supported Cooperative Work 14 (2005) 43–67.

[45] C. Morrison, A. Blackwell, Observing end-user customisation of
electronic patient records, in: V. Pipek, M.B. Rosson, B. de Ruyter,
V. Wulf (Eds.), End-User Development, Lecture Notes in Computer
Science, vol. 5435, Springer, Berlin, Heidelberg, 2009, pp. 275–284.

[46] F. Cabitza, C. Simone, LWOAD: a specification language to enable
the end-user develoment of coordinative functionalities, in:
V. Pipek, M.B. Rosson, B. de Ruyter, V. Wulf (Eds.), End-User
Development, Lecture Notes in Computer Science, vol. 5435,
Springer, Berlin, Heidelberg, 2009, pp. 146–165.

[47] M. Berg, Accumulating and coordinating: occasions for information
technologies in medical work, Computer Supported Cooperative
Work 8 (1999) 373–401.

[48] G. Fitzpatrick, Integrated care and the working record, Health
Informatics Journal 10 (2004) 291–302.

http://www.google.com/ig
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.sei.cmu.edu


C. Ardito et al. / Journal of Visual Languages and Computing 23 (2012) 78–9090
[49] C. Ardito, B.R. Barricelli, P. Buono, M.F. Costabile, A. Piccinno,
S. Valtolina, L. Zhu, Visual mediation mechanisms for collaborative
design and development, in: C. Stephanidis (Ed.), Universal Access
in HCI, Part I, HCII 2011, Lecture Notes in Computer Science, vol.
6765, Springer, Heidelberg, 2011, pp. 3–11.

[50] C. Ardito, P. Buono, M.F. Costabile, R. Lanzilotti, T. Pederson,
A. Piccinno, Experiencing the past through the senses: an M-learning
game at archaeological parks, IEEE Multimedia 15 (2008) 76–81.

[51] M.F. Costabile, A. De Angeli, R. Lanzilotti, C. Ardito, P. Buono,
T. Pederson, Explore! possibilities and challenges of mobile learn-
ing, in: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI), ACM, Florence, Italy, 2008, pp. 145–154.

[52] C. Ardito, R. Lanzilotti, An EUD approach to the design of educa-
tional games, International Journal of Distance Education Technol-
ogies (IJDET) 9 (2011) 25–40.

[53] Yahoo! Inc., YahooPipes, 2011, /http://pipes.yahoo.com/pipes/S,
accessed on July 28, 2011.

[54] C. Ardito, P. Buono, M.F. Costabile, Involving end users to create
software supporting visits to cultural heritage sites, in: Proceedings
of the 9th ACM SIGCHI Italian Chapter International Conference on
Computer–Human Interaction: Facing Complexity, ACM, Alghero,
Italy, 2011, pp. 157–162.

[55] N. Franke, M. Schreier, U. Kaiser, The ’’I designed it myself’’ effect in
mass customization, Management Science 56 (2009) 125–140.

[56] A. Trentin, E. Perin, C. Forza, Overcoming the customization-
responsiveness squeeze by using product configurators: beyond
anecdotal evidence, Computers in Industry 62 (2011) 260–268.

[57] T.W. Simpson, Product platform design and customization: status
and promise, Artificial Intelligence for Engineering Design, Analysis
and Manufacturing 18 (2004) 3–20.

[58] C. Ardito, B.R. Barricelli, P. Buono, M.F. Costabile, R. Lanzilotti,
A. Piccinno, S. Valtolina, An ontology-based approach to product
customization, in: M.F. Costabile, Y. Dittrich, G. Fischer, A. Piccinno
(Eds.), End-User Develpment, Lecture Notes in Computer Science,
vol. 6654, Springer, Berlin, Heidelberg, 2011, pp. 92–106.

[59] G. Fischer, Understanding, fostering, and supporting cultures of
participation, Interactions 18 (2011) 42–53.

[60] H. Jenkins, Confronting the Challenges of Participatory Culture:
Media Education for the 21st Century, MIT Press, Cambridge, MA,
USA, 2009.

http://pipes.yahoo.com/pipes/

	End users as co-designers of their own tools and products
	Introduction
	About end users
	User diversity
	Involving end users in the whole software life cycle
	EUD in different application domains
	Designing the electronic patient record
	Designing virtual showrooms on the Web
	Designing educational games in the cultural heritage domain
	Designing classic style furniture

	Conclusions
	Acknowledgments
	References




